Mots-clés : periodic perturbation
@article{TVP_2024_69_1_a5,
author = {K. S. Ryadovkin},
title = {On periodic branching random walks on $\mathbf{Z}^d$ with infinite variance of jumps},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {112--124},
year = {2024},
volume = {69},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a5/}
}
K. S. Ryadovkin. On periodic branching random walks on $\mathbf{Z}^d$ with infinite variance of jumps. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 112-124. http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a5/
[1] G. Berkolaiko, P. Kuchment, Introduction to quantum graphs, Math. Surveys Monogr., 186, Amer. Math. Soc., Providence, RI, 2013, xiv+270 pp. | DOI | MR | Zbl
[2] A. A. Borovkov, K. A. Borovkov, Asymptotic analysis of random walks. Heavy-tailed distributions, Encyclopedia Math. Appl., Cambridge Univ. Press, Cambridge, 118, xxx+625 pp. | DOI | MR | Zbl
[3] Y. Higuchi, Y. Nomura, “Spectral structure of the Laplacian on a covering graph”, European J. Combin., 30:2 (2009), 570–585 | DOI | MR | Zbl
[4] Y. Higuchi, T. Shirai, “The spectrum of magnetic Schrödinger operators on a graph with periodic structure”, J. Funct. Anal., 169:2 (1999), 456–480 | DOI | MR | Zbl
[5] Y. Higuchi, T. Shirai, “Some spectral and geometric properties for infinite graphs”, Discrete geometric analysis, Contemp. Math., 347, Amer. Math. Soc., Providence, RI, 2004, 29–56 | DOI | MR | Zbl
[6] R. A. Horn, C. R. Johnson, Matrix analysis, 2nd ed., Cambridge Univ. Press, Cambridge, 2013, xviii+643 pp. | MR | MR | Zbl | Zbl
[7] E. Korotyaev, N. Saburova, “Schrödinger operators on periodic discrete graphs”, J. Math. Anal. Appl., 420:1 (2014), 576–611 | DOI | MR | Zbl
[8] V. Kozyakin, “Hardy type asymptotics for cosine series in several variables with decreasing power-like coefficients”, Int. J. Adv. Res. Math. Appl., 5 (2016), 35–51 | DOI
[9] M. Reed, B. Simon, Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York–London, 1978, xv+396 pp. | MR | MR | Zbl | Zbl
[10] A. Rytova, E. Yarovaya, “Survival analysis of particle populations in branching random walks”, Comm. Statist. Simulation Comput., 50:10 (2021), 3031–3045 | DOI | MR | Zbl
[11] A. Rytova, E. Yarovaya, “Heavy-tailed branching random walks on multidimensional lattices. A moment approach”, Proc. Roy. Soc. Edinburgh Sect. A, 151:3 (2021), 971–992 | DOI | MR | Zbl
[12] Polly Wee Sy, T. Sunada, “Discrete Schrödinger operators on a graph”, Nagoya Math. J., 125 (1992), 141–150 | DOI | MR | Zbl
[13] E. B. Yarovaya, “Branching random walks with several sources”, Math. Popul. Stud., 20:1 (2013), 14–26 | DOI | MR | Zbl
[14] M. Sh. Birman, T. A. Suslina, “Second order periodic differential operators. Threshold properties and homogenization”, St. Petersburg Math. J., 15:5 (2004), 639–714 | DOI | MR | Zbl
[15] I. I. Gikhman, A. V. Skorokhod, Introduction to the theory of random processes, W. B. Saunders Co., Philadelphia, PA–London–Toronto, ON, 1969, xiii+516 pp. | MR | MR | Zbl
[16] M. V. Platonova, K. S. Ryadovkin, “Branching random walks on $\mathbf{Z}^d$ with periodic branching sources”, Theory Probab. Appl., 64:2 (2019), 229–248 | DOI | DOI | MR | Zbl
[17] M. V. Platonova, K. S. Ryadovkin, “On the variance of the particle number of a supercritical branching random walk on periodic graphs”, J. Math. Sci. (N.Y.), 258:6 (2021), 897–911 | DOI | MR | Zbl
[18] A. I. Rytova, E. B. Yarovaya, “Multidimensional Watson lemma and its applications”, Math. Notes, 99:3 (2016), 406–412 | DOI | DOI | MR | Zbl
[19] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, TsPI pri mekh.-matem. f-te MGU, M., 2007, 104 pp.
[20] E. B. Yarovaya, “Spectral properties of evolutionary operators in branching random walk models”, Math. Notes, 92:1 (2012), 115–131 | DOI | DOI | MR | Zbl