On periodic branching random walks on $\mathbf{Z}^d$ with infinite variance of jumps
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 112-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider periodic branching random walks with periodic branching sources. It is assumed that the transition intensities of the random walk satisfy some symmetry conditions and obey a condition which ensures infinite variance of jumps. In this case, we obtain the leading term for the asymptotics of the mean population size of particles at an arbitrary point of the lattice for large time.
Keywords: branching random walk, heavy tail, asymptotic behavior.
Mots-clés : periodic perturbation
@article{TVP_2024_69_1_a5,
     author = {K. S. Ryadovkin},
     title = {On periodic branching random walks on $\mathbf{Z}^d$ with infinite variance of jumps},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {112--124},
     year = {2024},
     volume = {69},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a5/}
}
TY  - JOUR
AU  - K. S. Ryadovkin
TI  - On periodic branching random walks on $\mathbf{Z}^d$ with infinite variance of jumps
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2024
SP  - 112
EP  - 124
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a5/
LA  - ru
ID  - TVP_2024_69_1_a5
ER  - 
%0 Journal Article
%A K. S. Ryadovkin
%T On periodic branching random walks on $\mathbf{Z}^d$ with infinite variance of jumps
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2024
%P 112-124
%V 69
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a5/
%G ru
%F TVP_2024_69_1_a5
K. S. Ryadovkin. On periodic branching random walks on $\mathbf{Z}^d$ with infinite variance of jumps. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 112-124. http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a5/

[1] G. Berkolaiko, P. Kuchment, Introduction to quantum graphs, Math. Surveys Monogr., 186, Amer. Math. Soc., Providence, RI, 2013, xiv+270 pp. | DOI | MR | Zbl

[2] A. A. Borovkov, K. A. Borovkov, Asymptotic analysis of random walks. Heavy-tailed distributions, Encyclopedia Math. Appl., Cambridge Univ. Press, Cambridge, 118, xxx+625 pp. | DOI | MR | Zbl

[3] Y. Higuchi, Y. Nomura, “Spectral structure of the Laplacian on a covering graph”, European J. Combin., 30:2 (2009), 570–585 | DOI | MR | Zbl

[4] Y. Higuchi, T. Shirai, “The spectrum of magnetic Schrödinger operators on a graph with periodic structure”, J. Funct. Anal., 169:2 (1999), 456–480 | DOI | MR | Zbl

[5] Y. Higuchi, T. Shirai, “Some spectral and geometric properties for infinite graphs”, Discrete geometric analysis, Contemp. Math., 347, Amer. Math. Soc., Providence, RI, 2004, 29–56 | DOI | MR | Zbl

[6] R. A. Horn, C. R. Johnson, Matrix analysis, 2nd ed., Cambridge Univ. Press, Cambridge, 2013, xviii+643 pp. | MR | MR | Zbl | Zbl

[7] E. Korotyaev, N. Saburova, “Schrödinger operators on periodic discrete graphs”, J. Math. Anal. Appl., 420:1 (2014), 576–611 | DOI | MR | Zbl

[8] V. Kozyakin, “Hardy type asymptotics for cosine series in several variables with decreasing power-like coefficients”, Int. J. Adv. Res. Math. Appl., 5 (2016), 35–51 | DOI

[9] M. Reed, B. Simon, Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York–London, 1978, xv+396 pp. | MR | MR | Zbl | Zbl

[10] A. Rytova, E. Yarovaya, “Survival analysis of particle populations in branching random walks”, Comm. Statist. Simulation Comput., 50:10 (2021), 3031–3045 | DOI | MR | Zbl

[11] A. Rytova, E. Yarovaya, “Heavy-tailed branching random walks on multidimensional lattices. A moment approach”, Proc. Roy. Soc. Edinburgh Sect. A, 151:3 (2021), 971–992 | DOI | MR | Zbl

[12] Polly Wee Sy, T. Sunada, “Discrete Schrödinger operators on a graph”, Nagoya Math. J., 125 (1992), 141–150 | DOI | MR | Zbl

[13] E. B. Yarovaya, “Branching random walks with several sources”, Math. Popul. Stud., 20:1 (2013), 14–26 | DOI | MR | Zbl

[14] M. Sh. Birman, T. A. Suslina, “Second order periodic differential operators. Threshold properties and homogenization”, St. Petersburg Math. J., 15:5 (2004), 639–714 | DOI | MR | Zbl

[15] I. I. Gikhman, A. V. Skorokhod, Introduction to the theory of random processes, W. B. Saunders Co., Philadelphia, PA–London–Toronto, ON, 1969, xiii+516 pp. | MR | MR | Zbl

[16] M. V. Platonova, K. S. Ryadovkin, “Branching random walks on $\mathbf{Z}^d$ with periodic branching sources”, Theory Probab. Appl., 64:2 (2019), 229–248 | DOI | DOI | MR | Zbl

[17] M. V. Platonova, K. S. Ryadovkin, “On the variance of the particle number of a supercritical branching random walk on periodic graphs”, J. Math. Sci. (N.Y.), 258:6 (2021), 897–911 | DOI | MR | Zbl

[18] A. I. Rytova, E. B. Yarovaya, “Multidimensional Watson lemma and its applications”, Math. Notes, 99:3 (2016), 406–412 | DOI | DOI | MR | Zbl

[19] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, TsPI pri mekh.-matem. f-te MGU, M., 2007, 104 pp.

[20] E. B. Yarovaya, “Spectral properties of evolutionary operators in branching random walk models”, Math. Notes, 92:1 (2012), 115–131 | DOI | DOI | MR | Zbl