On periodic branching random walks on $\mathbf{Z}^d$ with infinite variance of jumps
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 112-124
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider periodic branching random walks with periodic branching sources.
It is assumed that the transition intensities of the random walk satisfy some symmetry conditions and obey a condition which ensures infinite variance of jumps. In this case, we obtain the leading term for the asymptotics of the mean population size of particles at an arbitrary point of the lattice for
large time.
Keywords:
branching random walk, heavy tail, asymptotic behavior.
Mots-clés : periodic perturbation
Mots-clés : periodic perturbation
@article{TVP_2024_69_1_a5,
author = {K. S. Ryadovkin},
title = {On periodic branching random walks on $\mathbf{Z}^d$ with infinite variance of jumps},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {112--124},
publisher = {mathdoc},
volume = {69},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a5/}
}
TY - JOUR
AU - K. S. Ryadovkin
TI - On periodic branching random walks on $\mathbf{Z}^d$ with infinite variance of jumps
JO - Teoriâ veroâtnostej i ee primeneniâ
PY - 2024
SP - 112
EP - 124
VL - 69
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a5/
LA - ru
ID - TVP_2024_69_1_a5
ER -
K. S. Ryadovkin. On periodic branching random walks on $\mathbf{Z}^d$ with infinite variance of jumps. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 112-124. http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a5/