Mots-clés : Jacobi matrix, orthogonal polynomial.
@article{TVP_2024_69_1_a4,
author = {A. V. Lyulintsev},
title = {Markov branching random walks on $\mathbf{Z}_+$. {Approach} using orthogonal polynomials},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {91--111},
year = {2024},
volume = {69},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a4/}
}
A. V. Lyulintsev. Markov branching random walks on $\mathbf{Z}_+$. Approach using orthogonal polynomials. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 91-111. http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a4/
[1] I. I. Gikhman, A. V. Skorokhod, Introduction to the theory of random processes, W. B. Saunders Co., Philadelphia, PA–London–Toronto, ON, 1969, xiii+516 pp. | MR | MR | Zbl
[2] I. I. Gihman, A. V. Skorohod, The theory of stochastic processes, v. II, Grundlehren Math. Wiss., 218, Springer-Verlag, New York–Heidelberg, 1975, vii+441 pp. | MR | MR | Zbl | Zbl
[3] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Izd-vo TsPI pri mekh.-matem. f-te MGU, M., 2007, 104 pp.
[4] N. V. Smorodina, E. B. Yarovaya, “Martingale method for studying branching random walks”, Russian Math. Surveys, 77:5 (2022), 955–957 | DOI | DOI | MR | Zbl
[5] M. S. Birman, M. Z. Solomjak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), 5, D. Reidel Publishing Co., Dordrecht, 1987, xv+301 pp. | DOI | MR | MR | Zbl
[6] S. A. Molchanov, E. B. Yarovaya, “Branching processes with lattice spatial dynamics and a finite set of particle generation centers”, Dokl. Math., 86:2 (2012), 638–641 | DOI | MR | Zbl
[7] A. I. Rytova, “Harmonic analysis of branching random walks with heavy tails”, J. Math. Sci. (N.Y.), 262:4 (2022), 514–524 | DOI | MR | Zbl
[8] D. M. Balashova, E. B. Yarovaya, “Structure of the population of particles for a branching random walk in a homogeneous environment”, Proc. Steklov Inst. Math., 316 (2022), 57–71 | DOI | DOI | MR | Zbl
[9] M. V. Platonova, K. S. Ryadovkin, “Asymptotic behavior of the mean number of particles for a branching random walk on the lattice $\mathbf{Z}^d$ with periodic sources of branching”, J. Math. Sci. (N.Y.), 244:5 (2020), 858–873 | DOI | MR | Zbl
[10] M. V. Platonova, K. S. Ryadovkin, “On the mean number of particles of a branching random walk on $\mathbf{Z}^d$ with periodic sources of branching”, Dokl. Math., 97:2 (2018), 140–143 | DOI | DOI | MR | Zbl
[11] M. V. Platonova, K. S. Ryadovkin, “Branching random walks on $\mathbf{Z}^d$ with periodic branching sources”, Theory Probab. Appl., 64:2 (2019), 229–248 | DOI | DOI | MR | Zbl
[12] K. S. Ryadovkin, “Asymptotic behavior of branching random walks on some two-dimensional lattices”, J. Math. Sci. (N.Y.), 251:1 (2020), 141–146 | DOI | MR | Zbl
[13] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961, 310 pp. ; N. I. Akhiezer, The classical moment problem amd some related questions in analysis, Hafner Publishing Co., New York; Oliver Boyd, Edinburgh–London, 1965, x+253 с. | MR | Zbl | MR | Zbl
[14] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Rev. ed., Amer. Math. Soc., Providence, RI, 1959, ix+421 pp. | MR | Zbl | Zbl
[15] A. G. Sveshnikov, A. N. Bogolyubov, V. V. Kravtsov, Lektsii po matematicheskoi fizike, Uch. posob., Izd-vo Mosk. un-ta, M., 1993, 352 pp. | MR | Zbl
[16] G. E. Andrews, R. Askey, R. Roy, Special functions, Encyclopedia Math. Appl., 71, Cambridge Univ. Press, Cambridge, 1999, xvi+664 pp. | DOI | MR | Zbl
[17] J. C. Adams, “On the expression of the product of any two Legendre's coefficients by means of a series of Legendre's coefficients”, Proc. Lond. R. Soc., 27:185-189 (1878), 63–71 | DOI | Zbl