Markov branching random walks on $\mathbf{Z}_+$. Approach using orthogonal polynomials
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 91-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a continuous-time homogeneous Markov process on the state space $\mathbf{Z}_+=\{0,1,2,\dots\}$. The process is interpreted as the motion of a particle. A particle may transit only to neighboring points $\mathbf{Z}_+$, i.e., for each single motion of the particle, its coordinate changes by 1. The process is equipped with a branching mechanism. Branching sources may be located at each point of $\mathbf{Z}_+$. At a moment of branching, new particles appear at the branching point and then evolve independently of each other (and of the other particles) by the same rules as the initial particle. To such a branching Markov process there corresponds a Jacobi matrix. In terms of orthogonal polynomials corresponding to this matrix, we obtain formulas for the mean number of particles at an arbitrary fixed point of $\mathbf{Z}_+$ at time $t>0$. The results obtained are applied to some concrete models, an exact value for the mean number of particles in terms of special functions is given, and an asymptotic formula for this quantity for large time is found.
Keywords: Markov branching process, branching random walks
Mots-clés : Jacobi matrix, orthogonal polynomial.
@article{TVP_2024_69_1_a4,
     author = {A. V. Lyulintsev},
     title = {Markov branching random walks on $\mathbf{Z}_+$. {Approach} using orthogonal polynomials},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {91--111},
     year = {2024},
     volume = {69},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a4/}
}
TY  - JOUR
AU  - A. V. Lyulintsev
TI  - Markov branching random walks on $\mathbf{Z}_+$. Approach using orthogonal polynomials
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2024
SP  - 91
EP  - 111
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a4/
LA  - ru
ID  - TVP_2024_69_1_a4
ER  - 
%0 Journal Article
%A A. V. Lyulintsev
%T Markov branching random walks on $\mathbf{Z}_+$. Approach using orthogonal polynomials
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2024
%P 91-111
%V 69
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a4/
%G ru
%F TVP_2024_69_1_a4
A. V. Lyulintsev. Markov branching random walks on $\mathbf{Z}_+$. Approach using orthogonal polynomials. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 91-111. http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a4/

[1] I. I. Gikhman, A. V. Skorokhod, Introduction to the theory of random processes, W. B. Saunders Co., Philadelphia, PA–London–Toronto, ON, 1969, xiii+516 pp. | MR | MR | Zbl

[2] I. I. Gihman, A. V. Skorohod, The theory of stochastic processes, v. II, Grundlehren Math. Wiss., 218, Springer-Verlag, New York–Heidelberg, 1975, vii+441 pp. | MR | MR | Zbl | Zbl

[3] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Izd-vo TsPI pri mekh.-matem. f-te MGU, M., 2007, 104 pp.

[4] N. V. Smorodina, E. B. Yarovaya, “Martingale method for studying branching random walks”, Russian Math. Surveys, 77:5 (2022), 955–957 | DOI | DOI | MR | Zbl

[5] M. S. Birman, M. Z. Solomjak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), 5, D. Reidel Publishing Co., Dordrecht, 1987, xv+301 pp. | DOI | MR | MR | Zbl

[6] S. A. Molchanov, E. B. Yarovaya, “Branching processes with lattice spatial dynamics and a finite set of particle generation centers”, Dokl. Math., 86:2 (2012), 638–641 | DOI | MR | Zbl

[7] A. I. Rytova, “Harmonic analysis of branching random walks with heavy tails”, J. Math. Sci. (N.Y.), 262:4 (2022), 514–524 | DOI | MR | Zbl

[8] D. M. Balashova, E. B. Yarovaya, “Structure of the population of particles for a branching random walk in a homogeneous environment”, Proc. Steklov Inst. Math., 316 (2022), 57–71 | DOI | DOI | MR | Zbl

[9] M. V. Platonova, K. S. Ryadovkin, “Asymptotic behavior of the mean number of particles for a branching random walk on the lattice $\mathbf{Z}^d$ with periodic sources of branching”, J. Math. Sci. (N.Y.), 244:5 (2020), 858–873 | DOI | MR | Zbl

[10] M. V. Platonova, K. S. Ryadovkin, “On the mean number of particles of a branching random walk on $\mathbf{Z}^d$ with periodic sources of branching”, Dokl. Math., 97:2 (2018), 140–143 | DOI | DOI | MR | Zbl

[11] M. V. Platonova, K. S. Ryadovkin, “Branching random walks on $\mathbf{Z}^d$ with periodic branching sources”, Theory Probab. Appl., 64:2 (2019), 229–248 | DOI | DOI | MR | Zbl

[12] K. S. Ryadovkin, “Asymptotic behavior of branching random walks on some two-dimensional lattices”, J. Math. Sci. (N.Y.), 251:1 (2020), 141–146 | DOI | MR | Zbl

[13] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961, 310 pp. ; N. I. Akhiezer, The classical moment problem amd some related questions in analysis, Hafner Publishing Co., New York; Oliver Boyd, Edinburgh–London, 1965, x+253 с. | MR | Zbl | MR | Zbl

[14] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Rev. ed., Amer. Math. Soc., Providence, RI, 1959, ix+421 pp. | MR | Zbl | Zbl

[15] A. G. Sveshnikov, A. N. Bogolyubov, V. V. Kravtsov, Lektsii po matematicheskoi fizike, Uch. posob., Izd-vo Mosk. un-ta, M., 1993, 352 pp. | MR | Zbl

[16] G. E. Andrews, R. Askey, R. Roy, Special functions, Encyclopedia Math. Appl., 71, Cambridge Univ. Press, Cambridge, 1999, xvi+664 pp. | DOI | MR | Zbl

[17] J. C. Adams, “On the expression of the product of any two Legendre's coefficients by means of a series of Legendre's coefficients”, Proc. Lond. R. Soc., 27:185-189 (1878), 63–71 | DOI | Zbl