Markov branching random walks on $\mathbf{Z}_+$. Approach using orthogonal polynomials
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 91-111
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a continuous-time homogeneous Markov process on the state space
$\mathbf{Z}_+=\{0,1,2,\dots\}$. The process is interpreted as the motion of
a particle. A particle may transit only to neighboring points $\mathbf{Z}_+$,
i.e., for each single motion of the particle, its coordinate changes by 1.
The process is equipped with a branching mechanism. Branching sources may be
located at each point of $\mathbf{Z}_+$. At a moment of branching, new
particles appear at the branching point and then evolve independently of each
other (and of the other particles) by the same rules as the initial particle.
To such a branching Markov process there corresponds a Jacobi matrix. In
terms of orthogonal polynomials corresponding to this matrix, we obtain
formulas for the mean number of particles at an arbitrary fixed point
of $\mathbf{Z}_+$ at time $t>0$. The results obtained are applied to some
concrete models, an exact value for the mean number of particles in terms of
special functions is given, and an asymptotic formula for this quantity for
large time is found.
Keywords:
Markov branching process, branching random walks
Mots-clés : Jacobi matrix, orthogonal polynomial.
Mots-clés : Jacobi matrix, orthogonal polynomial.
@article{TVP_2024_69_1_a4,
author = {A. V. Lyulintsev},
title = {Markov branching random walks on $\mathbf{Z}_+$. {Approach} using orthogonal polynomials},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {91--111},
publisher = {mathdoc},
volume = {69},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a4/}
}
TY - JOUR
AU - A. V. Lyulintsev
TI - Markov branching random walks on $\mathbf{Z}_+$. Approach using orthogonal polynomials
JO - Teoriâ veroâtnostej i ee primeneniâ
PY - 2024
SP - 91
EP - 111
VL - 69
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a4/
LA - ru
ID - TVP_2024_69_1_a4
ER -
A. V. Lyulintsev. Markov branching random walks on $\mathbf{Z}_+$. Approach using orthogonal polynomials. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 91-111. http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a4/