Energy saving approximation of Wiener process under unilateral constraints
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 76-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an energy saving approximation of a Wiener process under unilateral constraints. We show that, almost surely, on large time intervals the minimal energy necessary for the approximation logarithmically depends on the interval length. We also construct an adaptive approximation strategy optimal in a class of diffusion strategies and providing the logarithmic order of energy consumption.
Keywords: Wiener process, Markovian pursuit strategy
Mots-clés : concave majorant.
@article{TVP_2024_69_1_a3,
     author = {M. A. Lifshits and S. E. Nikitin},
     title = {Energy saving approximation of {Wiener} process under unilateral constraints},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {76--90},
     year = {2024},
     volume = {69},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a3/}
}
TY  - JOUR
AU  - M. A. Lifshits
AU  - S. E. Nikitin
TI  - Energy saving approximation of Wiener process under unilateral constraints
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2024
SP  - 76
EP  - 90
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a3/
LA  - ru
ID  - TVP_2024_69_1_a3
ER  - 
%0 Journal Article
%A M. A. Lifshits
%A S. E. Nikitin
%T Energy saving approximation of Wiener process under unilateral constraints
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2024
%P 76-90
%V 69
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a3/
%G ru
%F TVP_2024_69_1_a3
M. A. Lifshits; S. E. Nikitin. Energy saving approximation of Wiener process under unilateral constraints. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 76-90. http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a3/

[1] D. I. Blinova, M. A. Lifshits, “Energy of taut strings accompanying a Wiener process and random walk in a band of variable width”, J. Math. Sci. (N.Y.), 268:5 (2022), 573–588 | DOI | MR | Zbl

[2] A. N. Borodin, Stochastic processes, Probab. Appl., Birkhäuser/Springer, Cham, 2017, xiv+626 pp. | DOI | MR | Zbl

[3] A. N. Borodin, P. Salminen, Handbook of Brownian motion — facts and formulae, Probab. Appl., Birkhäuser Verlag, 1996, xiv+462 pp. | DOI | MR | Zbl

[4] P. Groeneboom, “The concave majorant of Brownian motion”, Ann. Probab., 11:4 (1983), 1016–1027 | DOI | MR | Zbl

[5] I. Ibragimov, Z. Kabluchko, M. Lifshits, “Some extensions of linear approximation and prediction problems for stationary processes”, Stochastic Process. Appl., 129:8 (2019), 2758–2782 | DOI | MR | Zbl

[6] Z. Kabluchko, M. Lifshits, “Least energy approximation for processes with stationary increments”, J. Theoret. Probab., 30:1 (2017), 268–296 | DOI | MR | Zbl

[7] Z. A. Kabluchko, M. A. Lifshits, “Adaptive energy-saving approximation for stationary processes”, Izv. Math., 83:5 (2019), 932–956 | DOI | DOI | MR | Zbl

[8] L. D. Landau, E. M. Lifshitz, Course of theoretical physics, v. 3, Addison-Wesley Series in Advanced Physics, Quantum mechanics: non-relativistic theory, Pergamon Press Ltd., London–Paris; Addison-Wesley Publishing Co., Inc., Reading, MA, 1958, xii+515 pp. | MR | Zbl

[9] M. Lifshits, E. Setterqvist, “Energy of taut strings accompanying Wiener process”, Stochastic Process. Appl., 125:2 (2015), 401–427 | DOI | MR | Zbl

[10] M. A. Lifshits, A. A. Siuniaev, “Energy of taut strings accompanying random walk”, Probab. Math. Statist., 41:1 (2021), 9–23 | DOI | MR | Zbl

[11] E. Schertzer, “Renewal structure of the Brownian taut string”, Stochastic Process. Appl., 128:2 (2018), 487–504 | DOI | MR | Zbl