Mots-clés : concave majorant.
@article{TVP_2024_69_1_a3,
author = {M. A. Lifshits and S. E. Nikitin},
title = {Energy saving approximation of {Wiener} process under unilateral constraints},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {76--90},
year = {2024},
volume = {69},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a3/}
}
TY - JOUR AU - M. A. Lifshits AU - S. E. Nikitin TI - Energy saving approximation of Wiener process under unilateral constraints JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2024 SP - 76 EP - 90 VL - 69 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a3/ LA - ru ID - TVP_2024_69_1_a3 ER -
M. A. Lifshits; S. E. Nikitin. Energy saving approximation of Wiener process under unilateral constraints. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 76-90. http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a3/
[1] D. I. Blinova, M. A. Lifshits, “Energy of taut strings accompanying a Wiener process and random walk in a band of variable width”, J. Math. Sci. (N.Y.), 268:5 (2022), 573–588 | DOI | MR | Zbl
[2] A. N. Borodin, Stochastic processes, Probab. Appl., Birkhäuser/Springer, Cham, 2017, xiv+626 pp. | DOI | MR | Zbl
[3] A. N. Borodin, P. Salminen, Handbook of Brownian motion — facts and formulae, Probab. Appl., Birkhäuser Verlag, 1996, xiv+462 pp. | DOI | MR | Zbl
[4] P. Groeneboom, “The concave majorant of Brownian motion”, Ann. Probab., 11:4 (1983), 1016–1027 | DOI | MR | Zbl
[5] I. Ibragimov, Z. Kabluchko, M. Lifshits, “Some extensions of linear approximation and prediction problems for stationary processes”, Stochastic Process. Appl., 129:8 (2019), 2758–2782 | DOI | MR | Zbl
[6] Z. Kabluchko, M. Lifshits, “Least energy approximation for processes with stationary increments”, J. Theoret. Probab., 30:1 (2017), 268–296 | DOI | MR | Zbl
[7] Z. A. Kabluchko, M. A. Lifshits, “Adaptive energy-saving approximation for stationary processes”, Izv. Math., 83:5 (2019), 932–956 | DOI | DOI | MR | Zbl
[8] L. D. Landau, E. M. Lifshitz, Course of theoretical physics, v. 3, Addison-Wesley Series in Advanced Physics, Quantum mechanics: non-relativistic theory, Pergamon Press Ltd., London–Paris; Addison-Wesley Publishing Co., Inc., Reading, MA, 1958, xii+515 pp. | MR | Zbl
[9] M. Lifshits, E. Setterqvist, “Energy of taut strings accompanying Wiener process”, Stochastic Process. Appl., 125:2 (2015), 401–427 | DOI | MR | Zbl
[10] M. A. Lifshits, A. A. Siuniaev, “Energy of taut strings accompanying random walk”, Probab. Math. Statist., 41:1 (2021), 9–23 | DOI | MR | Zbl
[11] E. Schertzer, “Renewal structure of the Brownian taut string”, Stochastic Process. Appl., 128:2 (2018), 487–504 | DOI | MR | Zbl