Universal nonparametric kernel-type estimators for the mean and covariance functions of a stochastic process
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 46-75

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f_1(t), \dots, f_n(t)$ be independent copies of some a.s. continuous stochastic process $f(t)$, $t\in[0,1]$, which are observed with noise. We consider the problem of nonparametric estimation of the mean function $\mu(t) = \mathbf{E}f(t)$ and of the covariance function $\psi(t,s)=\operatorname{Cov}\{f(t),f(s)\}$ if the noise values of each of the copies $f_i(t)$, $i=1,\dots,n$, are observed in some collection of generally random (in general) time points (regressors). Under wide assumptions on the time points, we construct uniformly consistent kernel estimators for the mean and covariance functions both in the case of sparse data (where the number of observations for each copy of the stochastic process is uniformly bounded) and in the case of dense data (where the number of observations at each of $n$ series is increasing as $n\to\infty$). In contrast to the previous studies, our kernel estimators are universal with respect to the structure of time points, which can be either fixed rather than necessarily regular, or random rather than necessarily formed of independent or weakly dependent random variables.
Keywords: nonparametric regression, estimator of the mean function, estimator of the covariance function, kernel estimator, uniform consistency.
@article{TVP_2024_69_1_a2,
     author = {Yu. Yu. Linke and I. S. Borisov},
     title = {Universal nonparametric kernel-type estimators for the mean and covariance functions of a stochastic process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {46--75},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a2/}
}
TY  - JOUR
AU  - Yu. Yu. Linke
AU  - I. S. Borisov
TI  - Universal nonparametric kernel-type estimators for the mean and covariance functions of a stochastic process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2024
SP  - 46
EP  - 75
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a2/
LA  - ru
ID  - TVP_2024_69_1_a2
ER  - 
%0 Journal Article
%A Yu. Yu. Linke
%A I. S. Borisov
%T Universal nonparametric kernel-type estimators for the mean and covariance functions of a stochastic process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2024
%P 46-75
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a2/
%G ru
%F TVP_2024_69_1_a2
Yu. Yu. Linke; I. S. Borisov. Universal nonparametric kernel-type estimators for the mean and covariance functions of a stochastic process. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 46-75. http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a2/