@article{TVP_2024_69_1_a2,
author = {Yu. Yu. Linke and I. S. Borisov},
title = {Universal nonparametric kernel-type estimators for the mean and covariance functions of a stochastic process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {46--75},
year = {2024},
volume = {69},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a2/}
}
TY - JOUR AU - Yu. Yu. Linke AU - I. S. Borisov TI - Universal nonparametric kernel-type estimators for the mean and covariance functions of a stochastic process JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2024 SP - 46 EP - 75 VL - 69 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a2/ LA - ru ID - TVP_2024_69_1_a2 ER -
%0 Journal Article %A Yu. Yu. Linke %A I. S. Borisov %T Universal nonparametric kernel-type estimators for the mean and covariance functions of a stochastic process %J Teoriâ veroâtnostej i ee primeneniâ %D 2024 %P 46-75 %V 69 %N 1 %U http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a2/ %G ru %F TVP_2024_69_1_a2
Yu. Yu. Linke; I. S. Borisov. Universal nonparametric kernel-type estimators for the mean and covariance functions of a stochastic process. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 46-75. http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a2/
[1] A. Cuevas, “A partial overview of the theory of statistics with functional data”, J. Statist. Plann. Inference, 147 (2014), 1–23 | DOI | MR | Zbl
[2] P. Kokoszka, M. Reimherr, Introduction to functional data analysis, Texts Statist. Sci. Ser., CRC Press, Boca Raton, FL, 2017, xvi+290 pp. | DOI | MR | Zbl
[3] H.-G. Müller, “Functional modelling and classification of longitudinal data”, Scand. J. Statist., 32:2 (2005), 223–240 | DOI | MR | Zbl
[4] Tailen Hsing, R. Eubank, Theoretical foundations of functional data analysis, with an introduction to linear operators, Wiley Ser. Probab. Stat., John Wiley Sons, Ltd., Chichester, 2015, xiv+334 pp. | DOI | MR | Zbl
[5] F. Bunea, A. E. Ivanescu, M. H. Wegkamp, “Adaptive inference for the mean of a Gaussian process in functional data”, J. R. Stat. Soc. Ser. B Stat. Methodol., 73:4 (2011), 531–558 | DOI | MR | Zbl
[6] T. Tony Cai, Ming Yuan, “Optimal estimation of the mean function based on discretely sampled functional data: phase transition”, Ann. Statist., 39:5 (2011), 2330–2355 | DOI | MR | Zbl
[7] Guanqun Cao, Li Wang, Yehua Li, Lijian Yang, “Oracle-efficient confidence envelopes for covariance functions in dense functional data”, Statist. Sinica, 26:1 (2016), 359–383 | DOI | MR | Zbl
[8] Guanqun Cao, Lijian Yang, D. Todem, “Simultaneous inference for the mean function of dense functional data”, J. Nonparametr. Stat., 24:2 (2012), 359–377 | DOI | MR | Zbl
[9] P. Hall, H.-G. Müller, Jane-Ling Wang, “Properties of principal component methods for functional and longitudinal data analysis”, Ann. Statist., 34:3 (2006), 1493–1517 | DOI | MR | Zbl
[10] Seonjin Kim, Zhibiao Zhao, “Unified inference for sparse and dense longitudinal models”, Biometrika, 100:1 (2013), 203–212 | DOI | MR | Zbl
[11] Yehua Li, Tailen Hsing, “Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data”, Ann. Statist., 38:6 (2010), 3321–3351 | DOI | MR | Zbl
[12] Zhenhua Lin, Jane-Ling Wang, “Mean and covariance estimation for functional snippets”, J. Amer. Statist. Assoc., 117:537 (2022), 348–360 | DOI | MR | Zbl
[13] Shujie Ma, Lijian Yang, R. J. Carroll, “A simultaneous confidence band for sparse longitudinal regression”, Statist. Sinica, 22:1 (2012), 95–122 | DOI | MR | Zbl
[14] Q. Song, R. Liu, Q. Shao, L. Yang, “A simultaneous confidence band for dense longitudinal regression”, Comm. Statist. Theory Methods, 43:24 (2014), 5195–5210 | DOI | MR | Zbl
[15] Jiangyan Wang, Guanqun Cao, Li Wang, Lijian Yang, “Simultaneous confidence band for stationary covariance function of dense functional data”, J. Multivariate Anal., 176 (2020), 104584, 21 pp. | DOI | MR | Zbl
[16] Hulin Wu, Jin-Ting Zhang, Nonparametric regression methods for longitudinal data analysis. Mixed-effects modeling approaches, Wiley Ser. Probab. Stat., Wiley-Interscience [John Wiley Sons], Hoboken, NJ, 2006, xxii+369 pp. | DOI | MR | Zbl
[17] Fang Yao, “Asymptotic distributions of nonparametric regression estimators for longitudinal or functional data”, J. Multivariate Anal., 98:1 (2007), 40–56 | DOI | MR | Zbl
[18] D. Degras, “Asymptotics for the nonparametric estimation of the mean function of a random process”, Statist. Probab. Lett., 78:17 (2008), 2976–2980 | DOI | MR | Zbl
[19] Fang Yao, H.-G. Müller, Jane-Ling Wang, “Functional data analysis for sparse longitudinal data”, J. Amer. Statist. Assoc., 100:470 (2005), 577–590 | DOI | MR | Zbl
[20] Jin-Ting Zhang, Jianwei Chen, “Statistical inferences for functional data”, Ann. Statist., 35:3 (2007), 1052–1079 | DOI | MR | Zbl
[21] Xiaoke Zhang, Jane-Ling Wang, “Optimal weighting schemes for longitudinal and functional data”, Statist. Probab. Lett., 138 (2018), 165–170 | DOI | MR | Zbl
[22] Xiaoke Zhang, Jane-Ling Wang, “From sparse to dense functional data and beyond”, Ann. Statist., 44:5 (2016), 2281–2321 | DOI | MR | Zbl
[23] Shuzhuan Zheng, Lijian Yang, W. K. Härdle, “A smooth simultaneous confidence corridor for the mean of sparse functional data”, J. Amer. Statist. Assoc., 109:506 (2014), 661–673 | DOI | MR | Zbl
[24] Ling Zhou, Huazhen Lin, Hua Liang, “Efficient estimation of the nonparametric mean and covariance functions for longitudinal and sparse functional data”, J. Amer. Statist. Assoc., 113:524 (2018), 1550–1564 | DOI | MR | Zbl
[25] G. M. James, T. J. Hastie, “Functional linear discriminant analysis for irregularly sampled curves”, J. R. Stat. Soc. Ser. B Stat. Methodol., 63:3 (2001), 533–550 | DOI | MR | Zbl
[26] Jane-Ling Wang, Jeng-Min Chiou, H.-G. Müller, “Functional data analysis”, Annu. Rev. Stat. Appl., 3 (2016), 257–295 | DOI
[27] D. Gervini, “Free-knot spline smoothing for functional data”, J. R. Stat. Soc. Ser. B Stat. Methodol., 68:4 (2006), 671–687 | DOI | MR | Zbl
[28] J. A. Rice, Colin O. Wu, “Nonparametric mixed effects models for unequally sampled noisy curves”, Biometrics, 57:1 (2001), 253–259 | DOI | MR | Zbl
[29] Fang Yao, T. C. M. Lee, “Penalized spline models for functional principal component analysis”, J. R. Stat. Soc. Ser. B Stat. Methodol., 68:1 (2006), 3–25 | DOI | MR | Zbl
[30] J. A. Rice, B. W. Silverman, “Estimating the mean and covariance structure nonparametrically when the data are curves”, J. Roy. Statist. Soc. Ser. B, 53:1 (1991), 233–243 | MR | Zbl
[31] I. S. Borisov, Yu. Yu. Linke, P. S. Ruzankin, “Universal weighted kernel-type estimators for some class of regression models”, Metrika, 84:2 (2021), 141–166 | DOI | MR | Zbl
[32] Y. Y. Linke, I. S. Borisov, P. S. Ruzankin, “Universal kernel-type estimation of random fields”, Statistics, 57:4 (2023), 785–810 | DOI | MR | Zbl
[33] Y. Linke, I. Borisov, P. Ruzankin, V. Kutsenko, E. Yarovaya, S. Shalnova, “Universal local linear kernel estimators in nonparametric regression”, Mathematics, 10:15 (2022), 2693, 28 pp. | DOI
[34] Yu. Yu. Linke, “Towards insensitivity of Nadaraya–Watson estimators to design correlation”, Theory Probab. Appl., 68:2 (2023), 198–210 | DOI | DOI | MR | Zbl
[35] Yu. Linke, I. Borisov, “Insensitivity of Nadaraya–Watson estimators to design correlation”, Comm. Statist. Theory Methods, 51:19 (2022), 6909–6918 | DOI | MR | Zbl
[36] Yu. Yu. Linke, “Asymptotic properties of one-step weighted $M$-estimators with applications to regression”, Theory Probab. Appl., 62:3 (2018), 373–398 | DOI | DOI | MR | Zbl
[37] Yu. Yu. Linke, I. S. Borisov, “Constructing explicit estimators in nonlinear regression problems”, Theory Probab. Appl., 63:1 (2018), 22–44 | DOI | DOI | MR | Zbl
[38] Yu. Linke, “Asymptotic properties of one-step $M$-estimators”, Comm. Statist. Theory Methods, 48:16 (2019), 4096–4118 | DOI | MR | Zbl
[39] Yu. Yu. Linke, I. S. Borisov, “Constructing initial estimators in one-step estimation procedures of nonlinear regression”, Statist. Probab. Lett., 120 (2017), 87–94 | DOI | MR | Zbl
[40] Yu. Yu. Linke, I. S. Borisov, “An approach to constructing explicit estimators in nonlinear regression”, Siberian Adv. Math., 33:4 (2023), 338–346 | DOI
[41] Yu. Yu. Linke, “Asymptotic normality of one-step $M$-estimators based on non-identically distributed observations”, Statist. Probab. Lett., 129 (2017), 216–221 | DOI | MR | Zbl
[42] N. N. Chentsov, “Weak convergence of stochastic processes whose trajectories have no discontinuities of the second kind and the “heuristic” approach to the Kolmogorov–Smirnov tests”, Theory Probab. Appl., 1:1 (1956), 140–144 | DOI | MR