@article{TVP_2024_69_1_a1,
author = {A. V. Bulinski},
title = {Stability properties of feature selection measures},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {33--45},
year = {2024},
volume = {69},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a1/}
}
A. V. Bulinski. Stability properties of feature selection measures. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 33-45. http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a1/
[1] V. Bolón-Canedo, A. Alonso-Betanzos, Recent advances in ensembles for feature selection, Intell. Syst. Ref. Libr., 147, Springer, Cham, 2018, xiv+205 pp. | DOI
[2] L. D. D. Desboulets, “A review on variable selection in regression analysis”, Econometrics, 6:4 (2018), 45, 27 pp. | DOI
[3] B. Remeseiro, V. Bolon-Canedo, “A review of feature selection methods in medical applications”, Comput. Biol. Med., 112 (2019), 103375, 9 pp. | DOI
[4] V. Tam, N. Patel, M. Turcotte, Y. Bossé, G. Paré, D. Meyre, “Benefits and limitations of genome-wide association studies”, Nat. Rev. Genet., 20:8 (2019), 467–484 | DOI
[5] M. Kuhn, K. Johnson, Feature engineering and selection. A practical approach for predictive models, Chapman Hall/CRC, Boca Raton, FL, 2019, xv+297 pp. | DOI
[6] Xiaojun Mao, Liuhua Peng, Zhonglei Wang, Nonparametric feature selection by random forests and deep neural networks, 2022, 24 pp., arXiv: 2201.06821v1
[7] T. Hastie, R. Tibshirani, M. Wainwrigth, Statistical learning with sparsity. The lasso and generalizations, Monogr. Statist. Appl. Probab., 143, CRC Press, Boca Raton, FL, 2015, xv+351 pp. | DOI | MR | Zbl
[8] D. G. Kleinbaum, M. Klein, Logistic regression. A self-learning text, Stat. Biol. Health, 3rd ed., Springer, New York, 2010, xvii+701 pp. | DOI | Zbl
[9] A. Bulinski, A. Kozhevin, “Statistical estimation of mutual information for mixed model”, Methodol. Comput. Appl. Probab., 23:1 (2021), 123–142 | DOI | MR | Zbl
[10] D. Gola, J. M. M. John, K. van Steen, I. R. König, “A roadmap to multifactor dimensionality reduction methods”, Brief. Bioinform., 17:2 (2016), 293–308 | DOI
[11] M. D. Ritchie, L. W. Hahn, N. Roodi, L. Renee Bailey, W. D. Dupont, F. F. Parl, J. H. Moore, “Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer”, Am. J. Hum. Genet., 69:1 (2001), 138–147 | DOI
[12] K. Dunne, P. Cunningham, F. Azuaje, Solutions to instability problems with sequential wrapper-based approaches to feature selection, Tech. Rep. TCDCS-2002-28, Trinity college, School of Computer Science, Dublin, 2002, 22 pp.
[13] A. Kalousis, J. Prados, M. Hilario, “Stability of feature selection algorithms”, 5th IEEE international conference on data mining (ICDM{'}05) (Houston, TX, 2005), IEEE, 2005, 1–8 | DOI
[14] N. Meinshausen, P. Bühlmann, “Stability selection”, J. R. Stat. Soc. Ser. B Stat. Methodol., 72:4 (2010), 417–473 | DOI | MR | Zbl
[15] R. D. Shah, R. J. Samworth, “Variable selection with error control: another look at stability selection”, J. R. Stat. Soc. Ser. B Stat. Methodol., 75:1 (2013), 55–80 | DOI | MR | Zbl
[16] S. Nogueira, K. Sechidis, G. Brown, “On the stability of feature selection algorithms”, J. Mach. Learn. Res., 18 (2017), 174, 54 pp. | MR | Zbl
[17] U. M. Khaire, R. Dhanalakshmi, “Stability of feature selection algorithm: a review”, J. King Saud Univ. — Comput. Inf. Sci., 34:4 (2022), 1060–1073 | DOI
[18] J. L. Lustgarten, V. Gopalakrishnan, S. Visweswaran, “Measuring stability of feature selection in biomedical datasets”, AMIA Annu. Symp. Proc., 2009 (2009), 406–410
[19] L. I. Kuncheva, “A stability index for feature selection”, AIAP {'}07: Proceedings of the 25th conference on Proceedings of the 25th IASTED International Multi-Conference: artificial intelligence and applications (Innsbruck, 2007), ACTA Press, Anaheim, CA, 2007, 390–395
[20] J. L. Fleiss, “Measuring nominal scale agreement among many raters”, Psychol. Bull., 76:5 (1971), 378–382 | DOI
[21] A. A. Kozhevin, “Feature selection based on statistical estimation of mutual information”, Sib. elektron. matem. izv., 18:1 (2021), 720–728 | DOI | MR | Zbl