Joint distributions of generalized integrable increasing processes and their generalized compensators
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 3-32

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Lambda$ be the set of all boundary joint laws $\operatorname{Law} ([X_a, A_a], [X_b, A_b])$ at times $t=a$ and $t=b$ of integrable increasing processes $(X_t)_{t \in [a, b]}$ and their compensators $(A_t)_{t \in [a, b]}$, which start at the initial time from an arbitrary integrable initial condition $[X_a, A_a]$. We show that $\Lambda$ is convex and closed relative to the $\psi$-weak topology with linearly growing gauge function $\psi$. We obtain necessary and sufficient conditions for a probability measure $\lambda$ on $\mathcal{B}(\mathbf{R}^2 \times \mathbf{R}^2)$ to lie in the class of measures $\Lambda$. The main result of the paper provides, for two measures $\mu_a$ and $\mu_b$ on $\mathcal{B}(\mathbf{R}^2)$, necessary and sufficient conditions for the set $\Lambda$ to contain a measure $\lambda$ for which $\mu_a$ and $\mu_b$ are marginal distributions.
Keywords: increasing process, compensator, terminal distribution, Doob–Meyer decomposition, Strassen's theorem.
@article{TVP_2024_69_1_a0,
     author = {D. A. Borzykh},
     title = {Joint distributions of generalized integrable increasing processes and their generalized compensators},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--32},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a0/}
}
TY  - JOUR
AU  - D. A. Borzykh
TI  - Joint distributions of generalized integrable increasing processes and their generalized compensators
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2024
SP  - 3
EP  - 32
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a0/
LA  - ru
ID  - TVP_2024_69_1_a0
ER  - 
%0 Journal Article
%A D. A. Borzykh
%T Joint distributions of generalized integrable increasing processes and their generalized compensators
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2024
%P 3-32
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a0/
%G ru
%F TVP_2024_69_1_a0
D. A. Borzykh. Joint distributions of generalized integrable increasing processes and their generalized compensators. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 3-32. http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a0/