@article{TVP_2024_69_1_a0,
author = {D. A. Borzykh},
title = {Joint distributions of generalized integrable increasing processes and their generalized compensators},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {3--32},
year = {2024},
volume = {69},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a0/}
}
TY - JOUR AU - D. A. Borzykh TI - Joint distributions of generalized integrable increasing processes and their generalized compensators JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2024 SP - 3 EP - 32 VL - 69 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a0/ LA - ru ID - TVP_2024_69_1_a0 ER -
D. A. Borzykh. Joint distributions of generalized integrable increasing processes and their generalized compensators. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 3-32. http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a0/
[1] J. Jacod, A. N. Shiryaev, Limit theorems for stochastic processes, Ch. I–VI, Grundlehren Math. Wiss., 288, Springer-Verlag, Berlin, 1987, 1–347 | DOI | MR | MR | Zbl | Zbl
[2] A. A. Gushchin, “The joint law of terminal values of a nonnegative submartingale and its compensator”, Theory Probab. Appl., 62:2 (2018), 216–235 | DOI | DOI | MR | Zbl
[3] H. Föllmer, A. Schied, Stochastic finance. An introduction in discrete time, De Gruyter Textbook, 4th rev. ed., De Gruyter, Berlin, 2016, xii+596 pp. | DOI | MR | Zbl
[4] J. Neveu, Bases mathématiques du calcul des probabilités, Masson et Cie, Éditeurs, Paris, 1964, xiii+203 pp. | MR | MR | Zbl | Zbl
[5] A. Klenke, Probability theory. A comprehensive course, Universitext, 2nd rev. ed., Springer, London, 2014, xii+638 pp. | DOI | MR | Zbl
[6] V. I. Bogachev, O. G. Smolyanov, Real and functional analysis, Mosc. Lect., 4, Springer, Cham, 2020, 586 pp. | DOI | MR | Zbl
[7] D. A. Borzykh, “On a property of joint terminal distributions of locally integrable increasing processes and their compensators”, Theory Stoch. Process., 23(39):2 (2018), 7–20 | MR | Zbl
[8] C. D. Aliprantis, K. C. Border, Infinite dimensional analysis. A hitchhiker's guide, 3rd ed., Springer, Berlin, 2006, xxii+703 pp. | DOI | MR | Zbl
[9] J. Yeh, Martingales and stochastic analysis, Ser. Multivariate Anal., 1, World Sci. Publ., River Edge, NJ, 1995, xiv+501 pp. | DOI | MR | Zbl
[10] D. Borzykh, A. Gushchin, “On the denseness of the subset of discrete distributions in a certain set of two-dimensional distributions”, Mod. Stoch. Theory Appl., 9:3 (2022), 265–277 | DOI | MR | Zbl
[11] A. N. Shiryaev, Probability–1, Grad. Texts in Math., 95, 3rd ed., Springer, New York, 2016, xvii+486 pp. | DOI | MR | Zbl
[12] A. A. Gushchin, “Single jump filtrations and local martingales”, Mod. Stoch. Theory Appl., 7:2 (2020), 135–156 | DOI | MR | Zbl