Joint distributions of generalized integrable increasing processes and their generalized compensators
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 3-32
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\Lambda$ be the set of all boundary joint laws $\operatorname{Law} ([X_a, A_a], [X_b, A_b])$ at times $t=a$ and $t=b$ of integrable increasing
processes $(X_t)_{t \in [a, b]}$ and their compensators $(A_t)_{t \in [a,
b]}$, which start at the initial time from an arbitrary integrable initial
condition $[X_a, A_a]$. We show that $\Lambda$ is convex and closed relative
to the $\psi$-weak topology with linearly growing gauge function $\psi$. We obtain necessary and sufficient conditions for a probability
measure $\lambda$ on $\mathcal{B}(\mathbf{R}^2 \times \mathbf{R}^2)$ to lie
in the class of measures $\Lambda$. The main result of the paper provides,
for two measures $\mu_a$ and $\mu_b$ on $\mathcal{B}(\mathbf{R}^2)$,
necessary and sufficient conditions for the set $\Lambda$ to contain
a measure $\lambda$ for which $\mu_a$ and $\mu_b$ are marginal distributions.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
increasing process, compensator, terminal distribution, Doob–Meyer decomposition, Strassen's theorem.
                    
                  
                
                
                @article{TVP_2024_69_1_a0,
     author = {D. A. Borzykh},
     title = {Joint distributions of generalized integrable increasing processes and their generalized compensators},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--32},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a0/}
}
                      
                      
                    TY - JOUR AU - D. A. Borzykh TI - Joint distributions of generalized integrable increasing processes and their generalized compensators JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2024 SP - 3 EP - 32 VL - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a0/ LA - ru ID - TVP_2024_69_1_a0 ER -
D. A. Borzykh. Joint distributions of generalized integrable increasing processes and their generalized compensators. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 3-32. http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a0/
