Joint distributions of generalized integrable increasing processes and their generalized compensators
Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 3-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Lambda$ be the set of all boundary joint laws $\operatorname{Law} ([X_a, A_a], [X_b, A_b])$ at times $t=a$ and $t=b$ of integrable increasing processes $(X_t)_{t \in [a, b]}$ and their compensators $(A_t)_{t \in [a, b]}$, which start at the initial time from an arbitrary integrable initial condition $[X_a, A_a]$. We show that $\Lambda$ is convex and closed relative to the $\psi$-weak topology with linearly growing gauge function $\psi$. We obtain necessary and sufficient conditions for a probability measure $\lambda$ on $\mathcal{B}(\mathbf{R}^2 \times \mathbf{R}^2)$ to lie in the class of measures $\Lambda$. The main result of the paper provides, for two measures $\mu_a$ and $\mu_b$ on $\mathcal{B}(\mathbf{R}^2)$, necessary and sufficient conditions for the set $\Lambda$ to contain a measure $\lambda$ for which $\mu_a$ and $\mu_b$ are marginal distributions.
Keywords: increasing process, compensator, terminal distribution, Doob–Meyer decomposition, Strassen's theorem.
@article{TVP_2024_69_1_a0,
     author = {D. A. Borzykh},
     title = {Joint distributions of generalized integrable increasing processes and their generalized compensators},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--32},
     year = {2024},
     volume = {69},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a0/}
}
TY  - JOUR
AU  - D. A. Borzykh
TI  - Joint distributions of generalized integrable increasing processes and their generalized compensators
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2024
SP  - 3
EP  - 32
VL  - 69
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a0/
LA  - ru
ID  - TVP_2024_69_1_a0
ER  - 
%0 Journal Article
%A D. A. Borzykh
%T Joint distributions of generalized integrable increasing processes and their generalized compensators
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2024
%P 3-32
%V 69
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a0/
%G ru
%F TVP_2024_69_1_a0
D. A. Borzykh. Joint distributions of generalized integrable increasing processes and their generalized compensators. Teoriâ veroâtnostej i ee primeneniâ, Tome 69 (2024) no. 1, pp. 3-32. http://geodesic.mathdoc.fr/item/TVP_2024_69_1_a0/

[1] J. Jacod, A. N. Shiryaev, Limit theorems for stochastic processes, Ch. I–VI, Grundlehren Math. Wiss., 288, Springer-Verlag, Berlin, 1987, 1–347 | DOI | MR | MR | Zbl | Zbl

[2] A. A. Gushchin, “The joint law of terminal values of a nonnegative submartingale and its compensator”, Theory Probab. Appl., 62:2 (2018), 216–235 | DOI | DOI | MR | Zbl

[3] H. Föllmer, A. Schied, Stochastic finance. An introduction in discrete time, De Gruyter Textbook, 4th rev. ed., De Gruyter, Berlin, 2016, xii+596 pp. | DOI | MR | Zbl

[4] J. Neveu, Bases mathématiques du calcul des probabilités, Masson et Cie, Éditeurs, Paris, 1964, xiii+203 pp. | MR | MR | Zbl | Zbl

[5] A. Klenke, Probability theory. A comprehensive course, Universitext, 2nd rev. ed., Springer, London, 2014, xii+638 pp. | DOI | MR | Zbl

[6] V. I. Bogachev, O. G. Smolyanov, Real and functional analysis, Mosc. Lect., 4, Springer, Cham, 2020, 586 pp. | DOI | MR | Zbl

[7] D. A. Borzykh, “On a property of joint terminal distributions of locally integrable increasing processes and their compensators”, Theory Stoch. Process., 23(39):2 (2018), 7–20 | MR | Zbl

[8] C. D. Aliprantis, K. C. Border, Infinite dimensional analysis. A hitchhiker's guide, 3rd ed., Springer, Berlin, 2006, xxii+703 pp. | DOI | MR | Zbl

[9] J. Yeh, Martingales and stochastic analysis, Ser. Multivariate Anal., 1, World Sci. Publ., River Edge, NJ, 1995, xiv+501 pp. | DOI | MR | Zbl

[10] D. Borzykh, A. Gushchin, “On the denseness of the subset of discrete distributions in a certain set of two-dimensional distributions”, Mod. Stoch. Theory Appl., 9:3 (2022), 265–277 | DOI | MR | Zbl

[11] A. N. Shiryaev, Probability–1, Grad. Texts in Math., 95, 3rd ed., Springer, New York, 2016, xvii+486 pp. | DOI | MR | Zbl

[12] A. A. Gushchin, “Single jump filtrations and local martingales”, Mod. Stoch. Theory Appl., 7:2 (2020), 135–156 | DOI | MR | Zbl