Sufficient conditions for the Marchenko--Pastur theorem
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 4, pp. 813-833
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We find general sufficient conditions in the Marchenko–Pastur theorem
for high-dimensional sample covariance matrices associated with random vectors, for which the weak concentration property of quadratic forms may not hold in general. The results are obtained by means of a new martingale method, which may be useful in other problems of random matrix theory.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
random matrices
Keywords: sample covariance matrices, the Marchenko–Pastur law.
                    
                  
                
                
                Keywords: sample covariance matrices, the Marchenko–Pastur law.
@article{TVP_2023_68_4_a8,
     author = {P. A. Yaskov},
     title = {Sufficient conditions for the {Marchenko--Pastur} theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {813--833},
     publisher = {mathdoc},
     volume = {68},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a8/}
}
                      
                      
                    P. A. Yaskov. Sufficient conditions for the Marchenko--Pastur theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 4, pp. 813-833. http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a8/
