On forward and backward Kolmogorov equations for purely jump Markov processes and their generalizations
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 4, pp. 796-812 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper, we first give a survey of the forward and backward Kolmogorov equations for pure jump Markov processes with finite and countable state spaces, and then describe relevant results for the case of Markov processes with values in standard Borel spaces based on results of W. Feller and the authors of the present paper.
Keywords: pure jump Markov process, finite and countable state spaces, standard Borel space, differentiability of the transition probability, forward and backward equations, uniqueness of the solution.
@article{TVP_2023_68_4_a7,
     author = {E. A. Feinberg and A. N. Shiryaev},
     title = {On forward and backward {Kolmogorov} equations for purely jump {Markov} processes and their generalizations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {796--812},
     year = {2023},
     volume = {68},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a7/}
}
TY  - JOUR
AU  - E. A. Feinberg
AU  - A. N. Shiryaev
TI  - On forward and backward Kolmogorov equations for purely jump Markov processes and their generalizations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 796
EP  - 812
VL  - 68
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a7/
LA  - ru
ID  - TVP_2023_68_4_a7
ER  - 
%0 Journal Article
%A E. A. Feinberg
%A A. N. Shiryaev
%T On forward and backward Kolmogorov equations for purely jump Markov processes and their generalizations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 796-812
%V 68
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a7/
%G ru
%F TVP_2023_68_4_a7
E. A. Feinberg; A. N. Shiryaev. On forward and backward Kolmogorov equations for purely jump Markov processes and their generalizations. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 4, pp. 796-812. http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a7/

[1] W. Doeblin, “Sur l'équation matricielle $A^{(t+s)}=[A^{(t)}A^{(s)}]$ et ses applications aux probabilités en chaîne”, Bull. Sci. Math., 62 (1938), 21–32 ; “Sur l'équation matricielle $A^{(t+s)}=[A^{(t)}A^{(s)}]$ et ses applications au calcul des probabilités”, Bull. Sci. Math., 64 (1940), 35–37 | Zbl | MR | Zbl

[2] J. L. Doob, “Markoff chains – denumerable case”, Trans. Amer. Math. Soc., 58:3 (1945), 455–473 | DOI | MR | Zbl

[3] J. L. Doob, Stochastic processes, John Wiley Sons, Inc., New York; Chapman Hall, Ltd., London, 1953, viii+654 pp. | MR | MR | Zbl

[4] E. A. Feinberg, M. Mandava, A. N. Shiryaev, “On solutions of Kolmogorov's equations for nonhomogeneous jump Markov processes”, J. Math. Anal. Appl., 411:1 (2014), 261–270 | DOI | MR | Zbl

[5] E. Feinberg, M. Mandava, A. N. Shiryaev, “Kolmogorov's equations for jump Markov processes with unbounded jump rates”, Ann. Oper. Res., 317:2 (2022), 587–604 | DOI | MR | Zbl

[6] E. A. Feinberg, M. Mandava, A. N. Shiryaev, “Sufficiency of Markov policies for continuous-time jump Markov decision processes”, Math. Oper. Res., 47:2 (2022), 1266–1286 | DOI | MR | Zbl

[7] E. A. Feinberg, A. N. Shiryaev, “Kolmogorov's equations for jump Markov processes and their applications to control problems”, Theory Probab. Appl., 66:4 (2022), 582–600 | DOI | DOI | MR | Zbl

[8] W. Feller, “On the integro-differential equations of purely discontinuous Markoff processes”, Trans. Amer. Math. Soc., 48 (1940), 488–515 ; “Errata”, Trans. Amer. Math. Soc., 58 (1945), 474 | DOI | MR | Zbl | DOI

[9] I. I. Gikhman, A. V. Skorokhod, Introduction to the theory of random processes, W. B. Saunders Co., Philadelphia, PA–London–Toronto, ON, 1969, xiii+516 pp. | MR | MR | Zbl

[10] J. Jacod, “Multivariate point processes: predictable projection, Radon–Nikodym derivatives, representation of martingales”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 31 (1975), 235–253 | DOI | MR | Zbl

[11] J. Jacod, A. N. Shiryaev, Limit theorems for stochastic processes, v. 288, Grundlehren Math. Wiss., Berlin, Springer, 2003, xx+661 pp. | DOI | MR | Zbl

[12] D. G. Kendall, “Some further pathological examples in the theory of denumerable Markov processes”, Quart. J. Math. Oxford Ser. (2), 7 (1956), 39–56 | DOI | MR | Zbl

[13] D. G. Kendall, G. E. H. Reuter, “Some pathological Markov processes with a denumerable infinity of states and the associated semigroups of operators on $l$”, Proceedings of the international congress of mathematicians (Amsterdam, 1954), v. 3, Erven P. Noordhoff N. V., Groningen, 1956, 377–415 | MR | Zbl

[14] M. Yu. Kitaev, V. V. Rykov, Controlled queueing systems, CRC Press, Boca Raton, FL, 1995, x+287 pp. | MR | Zbl

[15] A. N. Kolmogorov, “Ob analiticheskikh metodakh v teorii veroyatnostei”, UMN, 1938, no. 5, 5–41 ; A. Kolmogoroff, “Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung”, Math. Ann., 104:1 (1931), 415–458 ; A. N. Kolmogorov, “On analytical methods in probability theory”, Selected works of A. N. Kolmogorov, т. II, Math. Appl. (Soviet Ser.), 26, Probability theory and mathematical statistics, Kluwer Acad. Publ., Dordrecht, 1992, 62–108 | DOI | MR | Zbl | DOI | MR | Zbl

[16] A. N. Kolmogorov, “On differentiability of transition probabilities of time-homogeneous Markov processes with a countable number of states”, Selected works of A. N. Kolmogorov, v. II, Math. Appl. (Soviet Ser.), 26, Probability theory and mathematical statistics, Kluwer Acad. Publ., Dordrecht, 1992, 395–403 | DOI | MR | MR | Zbl

[17] S. E. Kuznetsov, “Any Markov process in a Borel space has a transition function”, Theory Probab. Appl., 25:2 (1981), 384–388 | DOI | MR | Zbl

[18] A. Piunovskiy, Yi Zhang, Continuous-time Markov decision processes. Borel space models and general control strategies, Probab. Theory Stoch. Model., 97, Springer, Cham, 2020, xxiv+583 pp. | DOI | MR | Zbl

[19] G. E. H. Reuter, “Denumerable Markov processes and the associated contraction semigroups on $l$”, Acta Math., 97 (1957), 1–46 | DOI | MR | Zbl

[20] Liuer Ye, Xianping Guo, O. Hernández-Lerma, “Existence and regularity of a nonhomogeneous transition matrix under measurability conditions”, J. Theoret. Probab., 21:3 (2008), 604–627 | DOI | MR | Zbl

[21] A. A. Yushkevich, “Homogeneous Markov processes”, Selected works of A. N. Kolmogorov, v. II, Math. Appl. (Soviet Ser.), 26, Probability theory and mathematical statistics, Kluwer Acad. Publ., Dordrecht, 1992, 530–537 | DOI | MR | MR | Zbl | Zbl