@article{TVP_2023_68_4_a7,
author = {E. A. Feinberg and A. N. Shiryaev},
title = {On forward and backward {Kolmogorov} equations for purely jump {Markov} processes and their generalizations},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {796--812},
year = {2023},
volume = {68},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a7/}
}
TY - JOUR AU - E. A. Feinberg AU - A. N. Shiryaev TI - On forward and backward Kolmogorov equations for purely jump Markov processes and their generalizations JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2023 SP - 796 EP - 812 VL - 68 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a7/ LA - ru ID - TVP_2023_68_4_a7 ER -
%0 Journal Article %A E. A. Feinberg %A A. N. Shiryaev %T On forward and backward Kolmogorov equations for purely jump Markov processes and their generalizations %J Teoriâ veroâtnostej i ee primeneniâ %D 2023 %P 796-812 %V 68 %N 4 %U http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a7/ %G ru %F TVP_2023_68_4_a7
E. A. Feinberg; A. N. Shiryaev. On forward and backward Kolmogorov equations for purely jump Markov processes and their generalizations. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 4, pp. 796-812. http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a7/
[1] W. Doeblin, “Sur l'équation matricielle $A^{(t+s)}=[A^{(t)}A^{(s)}]$ et ses applications aux probabilités en chaîne”, Bull. Sci. Math., 62 (1938), 21–32 ; “Sur l'équation matricielle $A^{(t+s)}=[A^{(t)}A^{(s)}]$ et ses applications au calcul des probabilités”, Bull. Sci. Math., 64 (1940), 35–37 | Zbl | MR | Zbl
[2] J. L. Doob, “Markoff chains – denumerable case”, Trans. Amer. Math. Soc., 58:3 (1945), 455–473 | DOI | MR | Zbl
[3] J. L. Doob, Stochastic processes, John Wiley Sons, Inc., New York; Chapman Hall, Ltd., London, 1953, viii+654 pp. | MR | MR | Zbl
[4] E. A. Feinberg, M. Mandava, A. N. Shiryaev, “On solutions of Kolmogorov's equations for nonhomogeneous jump Markov processes”, J. Math. Anal. Appl., 411:1 (2014), 261–270 | DOI | MR | Zbl
[5] E. Feinberg, M. Mandava, A. N. Shiryaev, “Kolmogorov's equations for jump Markov processes with unbounded jump rates”, Ann. Oper. Res., 317:2 (2022), 587–604 | DOI | MR | Zbl
[6] E. A. Feinberg, M. Mandava, A. N. Shiryaev, “Sufficiency of Markov policies for continuous-time jump Markov decision processes”, Math. Oper. Res., 47:2 (2022), 1266–1286 | DOI | MR | Zbl
[7] E. A. Feinberg, A. N. Shiryaev, “Kolmogorov's equations for jump Markov processes and their applications to control problems”, Theory Probab. Appl., 66:4 (2022), 582–600 | DOI | DOI | MR | Zbl
[8] W. Feller, “On the integro-differential equations of purely discontinuous Markoff processes”, Trans. Amer. Math. Soc., 48 (1940), 488–515 ; “Errata”, Trans. Amer. Math. Soc., 58 (1945), 474 | DOI | MR | Zbl | DOI
[9] I. I. Gikhman, A. V. Skorokhod, Introduction to the theory of random processes, W. B. Saunders Co., Philadelphia, PA–London–Toronto, ON, 1969, xiii+516 pp. | MR | MR | Zbl
[10] J. Jacod, “Multivariate point processes: predictable projection, Radon–Nikodym derivatives, representation of martingales”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 31 (1975), 235–253 | DOI | MR | Zbl
[11] J. Jacod, A. N. Shiryaev, Limit theorems for stochastic processes, v. 288, Grundlehren Math. Wiss., Berlin, Springer, 2003, xx+661 pp. | DOI | MR | Zbl
[12] D. G. Kendall, “Some further pathological examples in the theory of denumerable Markov processes”, Quart. J. Math. Oxford Ser. (2), 7 (1956), 39–56 | DOI | MR | Zbl
[13] D. G. Kendall, G. E. H. Reuter, “Some pathological Markov processes with a denumerable infinity of states and the associated semigroups of operators on $l$”, Proceedings of the international congress of mathematicians (Amsterdam, 1954), v. 3, Erven P. Noordhoff N. V., Groningen, 1956, 377–415 | MR | Zbl
[14] M. Yu. Kitaev, V. V. Rykov, Controlled queueing systems, CRC Press, Boca Raton, FL, 1995, x+287 pp. | MR | Zbl
[15] A. N. Kolmogorov, “Ob analiticheskikh metodakh v teorii veroyatnostei”, UMN, 1938, no. 5, 5–41 ; A. Kolmogoroff, “Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung”, Math. Ann., 104:1 (1931), 415–458 ; A. N. Kolmogorov, “On analytical methods in probability theory”, Selected works of A. N. Kolmogorov, т. II, Math. Appl. (Soviet Ser.), 26, Probability theory and mathematical statistics, Kluwer Acad. Publ., Dordrecht, 1992, 62–108 | DOI | MR | Zbl | DOI | MR | Zbl
[16] A. N. Kolmogorov, “On differentiability of transition probabilities of time-homogeneous Markov processes with a countable number of states”, Selected works of A. N. Kolmogorov, v. II, Math. Appl. (Soviet Ser.), 26, Probability theory and mathematical statistics, Kluwer Acad. Publ., Dordrecht, 1992, 395–403 | DOI | MR | MR | Zbl
[17] S. E. Kuznetsov, “Any Markov process in a Borel space has a transition function”, Theory Probab. Appl., 25:2 (1981), 384–388 | DOI | MR | Zbl
[18] A. Piunovskiy, Yi Zhang, Continuous-time Markov decision processes. Borel space models and general control strategies, Probab. Theory Stoch. Model., 97, Springer, Cham, 2020, xxiv+583 pp. | DOI | MR | Zbl
[19] G. E. H. Reuter, “Denumerable Markov processes and the associated contraction semigroups on $l$”, Acta Math., 97 (1957), 1–46 | DOI | MR | Zbl
[20] Liuer Ye, Xianping Guo, O. Hernández-Lerma, “Existence and regularity of a nonhomogeneous transition matrix under measurability conditions”, J. Theoret. Probab., 21:3 (2008), 604–627 | DOI | MR | Zbl
[21] A. A. Yushkevich, “Homogeneous Markov processes”, Selected works of A. N. Kolmogorov, v. II, Math. Appl. (Soviet Ser.), 26, Probability theory and mathematical statistics, Kluwer Acad. Publ., Dordrecht, 1992, 530–537 | DOI | MR | MR | Zbl | Zbl