On one limit theorem for branching random walks
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 4, pp. 779-795

Voir la notice de l'article provenant de la source Math-Net.Ru

The foundations of the general theory of Markov random processes were laid by A. N. Kolmogorov. Such processes include, in particular, branching random walks on lattices $\mathbf{Z}^d$, $d \in \mathbf{N}$. In the present paper, we consider a branching random walk where particles may die or produce descendants at any point of the lattice. Motion of each particle on $\mathbf{Z}^d$ is described by a symmetric homogeneous irreducible random walk. It is assumed that the branching rate of particles at $x \in \mathbf{Z}^d$ tends to zero as $\|x\| \to \infty$, and that an additional condition on the parameters of the branching random walk, which gives that the mean population size of particles at each point $\mathbf{Z}^d$ grows exponentially in time, is met. In this case, the walk generation operator in the right-hand side of the equation for the mean population size of particles undergoes a perturbation due to possible generation of particles at points $\mathbf{Z}^d$. Equations of this kind with perturbation of the diffusion operator in $\mathbf{R}^2$, which were considered by Kolmogorov, Petrovsky, and Piskunov in 1937, continue being studied using the theory of branching random walks on discrete structures. Under the above assumptions, we prove a limit theorem on mean-square convergence of the normalized number of particles at an arbitrary fixed point of the lattice as $t\to\infty$.
Keywords: branching random walk, the Kolmogorov equations, limit theorems.
Mots-clés : martingale
@article{TVP_2023_68_4_a6,
     author = {N. V. Smorodina and E. B. Yarovaya},
     title = {On one limit theorem for branching random walks},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {779--795},
     publisher = {mathdoc},
     volume = {68},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a6/}
}
TY  - JOUR
AU  - N. V. Smorodina
AU  - E. B. Yarovaya
TI  - On one limit theorem for branching random walks
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 779
EP  - 795
VL  - 68
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a6/
LA  - ru
ID  - TVP_2023_68_4_a6
ER  - 
%0 Journal Article
%A N. V. Smorodina
%A E. B. Yarovaya
%T On one limit theorem for branching random walks
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 779-795
%V 68
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a6/
%G ru
%F TVP_2023_68_4_a6
N. V. Smorodina; E. B. Yarovaya. On one limit theorem for branching random walks. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 4, pp. 779-795. http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a6/