On one limit theorem for branching random walks
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 4, pp. 779-795 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The foundations of the general theory of Markov random processes were laid by A. N. Kolmogorov. Such processes include, in particular, branching random walks on lattices $\mathbf{Z}^d$, $d \in \mathbf{N}$. In the present paper, we consider a branching random walk where particles may die or produce descendants at any point of the lattice. Motion of each particle on $\mathbf{Z}^d$ is described by a symmetric homogeneous irreducible random walk. It is assumed that the branching rate of particles at $x \in \mathbf{Z}^d$ tends to zero as $\|x\| \to \infty$, and that an additional condition on the parameters of the branching random walk, which gives that the mean population size of particles at each point $\mathbf{Z}^d$ grows exponentially in time, is met. In this case, the walk generation operator in the right-hand side of the equation for the mean population size of particles undergoes a perturbation due to possible generation of particles at points $\mathbf{Z}^d$. Equations of this kind with perturbation of the diffusion operator in $\mathbf{R}^2$, which were considered by Kolmogorov, Petrovsky, and Piskunov in 1937, continue being studied using the theory of branching random walks on discrete structures. Under the above assumptions, we prove a limit theorem on mean-square convergence of the normalized number of particles at an arbitrary fixed point of the lattice as $t\to\infty$.
Keywords: branching random walk, the Kolmogorov equations, limit theorems.
Mots-clés : martingale
@article{TVP_2023_68_4_a6,
     author = {N. V. Smorodina and E. B. Yarovaya},
     title = {On one limit theorem for branching random walks},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {779--795},
     year = {2023},
     volume = {68},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a6/}
}
TY  - JOUR
AU  - N. V. Smorodina
AU  - E. B. Yarovaya
TI  - On one limit theorem for branching random walks
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 779
EP  - 795
VL  - 68
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a6/
LA  - ru
ID  - TVP_2023_68_4_a6
ER  - 
%0 Journal Article
%A N. V. Smorodina
%A E. B. Yarovaya
%T On one limit theorem for branching random walks
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 779-795
%V 68
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a6/
%G ru
%F TVP_2023_68_4_a6
N. V. Smorodina; E. B. Yarovaya. On one limit theorem for branching random walks. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 4, pp. 779-795. http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a6/

[1] B. A. Sevastyanov, “Teoriya vetvyaschikhsya sluchainykh protsessov”, UMN, 6:6(46) (1951), 47–99 | MR | Zbl

[2] A. Kolmogoroff, “Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung”, Math. Ann., 104:1 (1931), 415–458 | DOI | MR | Zbl

[3] A. N. Kolmogorov, “Kachestvennoe izuchenie matematicheskikh modelei dinamiki populyatsii”, Problemy kibernetiki, 25:2 (1972), 101–106 | MR | Zbl

[4] A. Kolmogoroff, I. Petrovsky, N. Piscounoff, “Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique”, Moscou Univ. Bull. Math., 1:6 (1937), 1–25 | Zbl

[5] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Tsentr prikl. issled. pri mekh.-matem. f-te MGU, M., 2007, 104 pp.

[6] Ya. B. Zel'dovich, S. A. Molchanov, A. A. Ruzmaĭkin, D. D. Sokoloff, “Intermittency, diffusion and generation in a nonstationary random medium”, Soviet Sci. Rev. Sect. C Math. Phys. Rev., 7, Harwood Acad. Publ., Chur, 1988, 3–110 | MR | Zbl

[7] J. Gärtner, S. A. Molchanov, “Parabolic problems for the Anderson model. II. Second-order asymptotics and structure of high peaks”, Probab. Theory Related Fields, 111:1 (1998), 17–55 | DOI | MR | Zbl

[8] M. Cranston, L. Koralov, S. Molchanov, B. Vainberg, “Continuous model for homopolymers”, J. Funct. Anal., 256:8 (2009), 2656–2696 | DOI | MR | Zbl

[9] S. Molchanov, J. Whitmeyer, “Spatial models of population processes”, Modern problems of stochastic analysis and statistics, Springer Proc. Math. Stat., 208, Springer, Cham, 2017, 435–454 | DOI | MR | Zbl

[10] Iu. Makarova, D. Balashova, S. Molchanov, E. Yarovaya, “Branching random walks with two types of particles on multidimensional lattices”, Mathematics, 10:6 (2022), 867, 45 pp. | DOI

[11] I. I. Gikhman, A. V. Skorokhod, Introduction to the theory of random processes, W. B. Saunders Co., Philadelphia, PA–London–Toronto, ON, 1969, xiii+516 pp. | MR | MR | Zbl

[12] J. D. Biggins, “Martingale convergence and large deviations in the branching random walk”, Theory Probab. Appl., 37:2 (1993), 269–273 | DOI | MR | Zbl

[13] A. Joffe, “A new martingale in branching random walk”, Ann. Appl. Probab., 3:4 (1993), 1145–1150 | DOI | MR | Zbl

[14] N. V. Smorodina, E. B. Yarovaya, “Martingale method for studying branching random walks”, Russian Math. Surveys, 77:5 (2022), 955–957 | DOI | DOI | MR | Zbl

[15] Ju. L. Daleckiĭ, M. G. Kreĭn, Stability of solutions of differential equations in Banach space, Transl. Math. Monogr., 43, Amer. Math. Soc., Providence, RI, 1974, vi+386 pp. | DOI | MR | MR | Zbl | Zbl

[16] A. D. Wentzell, A course in the theory of stochastic processes, McGraw-Hill International Book Co., New York, 1981, x+304 pp. | MR | MR | Zbl | Zbl

[17] P. Major, Multiple Wiener–Itô integrals. With applications to limit theorems, Lecture Notes in Math., 849, 2nd ed., Springer, Cham, 2014, xiv+126 pp. | DOI | MR | Zbl

[18] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, NY, 1957, 1961, ix+129 pp., ix+128 pp. | MR | MR | Zbl | Zbl

[19] M. S. Birman, M. Z. Solomjak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), 5, D. Reidel Publishing Co., Dordrecht, 1987, xv+301 pp. | DOI | MR | Zbl

[20] Kung-Ching Chang, Xuefeng Wang, Xie Wu, “On the spectral theory of positive operators and PDE applications”, Discrete Contin. Dyn. Syst., 40:6 (2020), 3171–3200 | DOI | MR | Zbl

[21] P. P. Zabreiko, S. V. Smitskikh, “A theorem of M. G. Krein and M. A. Rutman”, Funct. Anal. Appl., 13:3 (1979), 222–223 | DOI | MR | Zbl