Mots-clés : martingale
@article{TVP_2023_68_4_a6,
author = {N. V. Smorodina and E. B. Yarovaya},
title = {On one limit theorem for branching random walks},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {779--795},
year = {2023},
volume = {68},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a6/}
}
N. V. Smorodina; E. B. Yarovaya. On one limit theorem for branching random walks. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 4, pp. 779-795. http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a6/
[1] B. A. Sevastyanov, “Teoriya vetvyaschikhsya sluchainykh protsessov”, UMN, 6:6(46) (1951), 47–99 | MR | Zbl
[2] A. Kolmogoroff, “Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung”, Math. Ann., 104:1 (1931), 415–458 | DOI | MR | Zbl
[3] A. N. Kolmogorov, “Kachestvennoe izuchenie matematicheskikh modelei dinamiki populyatsii”, Problemy kibernetiki, 25:2 (1972), 101–106 | MR | Zbl
[4] A. Kolmogoroff, I. Petrovsky, N. Piscounoff, “Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique”, Moscou Univ. Bull. Math., 1:6 (1937), 1–25 | Zbl
[5] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Tsentr prikl. issled. pri mekh.-matem. f-te MGU, M., 2007, 104 pp.
[6] Ya. B. Zel'dovich, S. A. Molchanov, A. A. Ruzmaĭkin, D. D. Sokoloff, “Intermittency, diffusion and generation in a nonstationary random medium”, Soviet Sci. Rev. Sect. C Math. Phys. Rev., 7, Harwood Acad. Publ., Chur, 1988, 3–110 | MR | Zbl
[7] J. Gärtner, S. A. Molchanov, “Parabolic problems for the Anderson model. II. Second-order asymptotics and structure of high peaks”, Probab. Theory Related Fields, 111:1 (1998), 17–55 | DOI | MR | Zbl
[8] M. Cranston, L. Koralov, S. Molchanov, B. Vainberg, “Continuous model for homopolymers”, J. Funct. Anal., 256:8 (2009), 2656–2696 | DOI | MR | Zbl
[9] S. Molchanov, J. Whitmeyer, “Spatial models of population processes”, Modern problems of stochastic analysis and statistics, Springer Proc. Math. Stat., 208, Springer, Cham, 2017, 435–454 | DOI | MR | Zbl
[10] Iu. Makarova, D. Balashova, S. Molchanov, E. Yarovaya, “Branching random walks with two types of particles on multidimensional lattices”, Mathematics, 10:6 (2022), 867, 45 pp. | DOI
[11] I. I. Gikhman, A. V. Skorokhod, Introduction to the theory of random processes, W. B. Saunders Co., Philadelphia, PA–London–Toronto, ON, 1969, xiii+516 pp. | MR | MR | Zbl
[12] J. D. Biggins, “Martingale convergence and large deviations in the branching random walk”, Theory Probab. Appl., 37:2 (1993), 269–273 | DOI | MR | Zbl
[13] A. Joffe, “A new martingale in branching random walk”, Ann. Appl. Probab., 3:4 (1993), 1145–1150 | DOI | MR | Zbl
[14] N. V. Smorodina, E. B. Yarovaya, “Martingale method for studying branching random walks”, Russian Math. Surveys, 77:5 (2022), 955–957 | DOI | DOI | MR | Zbl
[15] Ju. L. Daleckiĭ, M. G. Kreĭn, Stability of solutions of differential equations in Banach space, Transl. Math. Monogr., 43, Amer. Math. Soc., Providence, RI, 1974, vi+386 pp. | DOI | MR | MR | Zbl | Zbl
[16] A. D. Wentzell, A course in the theory of stochastic processes, McGraw-Hill International Book Co., New York, 1981, x+304 pp. | MR | MR | Zbl | Zbl
[17] P. Major, Multiple Wiener–Itô integrals. With applications to limit theorems, Lecture Notes in Math., 849, 2nd ed., Springer, Cham, 2014, xiv+126 pp. | DOI | MR | Zbl
[18] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, NY, 1957, 1961, ix+129 pp., ix+128 pp. | MR | MR | Zbl | Zbl
[19] M. S. Birman, M. Z. Solomjak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), 5, D. Reidel Publishing Co., Dordrecht, 1987, xv+301 pp. | DOI | MR | Zbl
[20] Kung-Ching Chang, Xuefeng Wang, Xie Wu, “On the spectral theory of positive operators and PDE applications”, Discrete Contin. Dyn. Syst., 40:6 (2020), 3171–3200 | DOI | MR | Zbl
[21] P. P. Zabreiko, S. V. Smitskikh, “A theorem of M. G. Krein and M. A. Rutman”, Funct. Anal. Appl., 13:3 (1979), 222–223 | DOI | MR | Zbl