On the complete convergence of moments in exact asymptotics under normal approximation
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 4, pp. 769-778 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the sums of the form $\overline I_s(\varepsilon) = \sum_{n\geqslant 1} n^{s-r/2}\mathbf{E}|S_n|^r\,\mathbf I[|S_n|\geqslant \varepsilon\,n^\gamma]$, where $S_n = X_1 +\dots + X_n$, $X_n$, $n\geqslant 1$, is a sequence of independent and identically distributed random variables (r.v.'s) $s+1 \geqslant 0$, $r\geqslant 0$, $\gamma>1/2$, and $\varepsilon>0$, new results on their behavior are provided. As an example, we obtain the following generalization of Heyde's result [J. Appl. Probab., 12 (1975), pp. 173–175]: for any $r\geqslant 0$, $\lim_{\varepsilon\searrow 0}\varepsilon^{2}\sum_{n\geqslant 1} n^{-r/2} \mathbf{E}|S_n|^r\,\mathbf I[|S_n|\geqslant \varepsilon\, n] =\mathbf{E} |\xi|^{r+2}$ if and only if $\mathbf{E} X=0$ and $\mathbf{E} X^2=1$, and also $\mathbf{E}|X|^{2+r/2}<\infty$ if $r < 4$, $\mathbf{E}|X|^r<\infty$ if $r>4$, and $\mathbf{E} X^4 \ln{(1+|X|)}<\infty$ if $r=4$. Here, $\xi$ is a standard Gaussian r.v.
Mots-clés : convergence rate
Keywords: exact asymptotics, complete convergence of moments.
@article{TVP_2023_68_4_a5,
     author = {L. V. Rozovskii},
     title = {On the complete convergence of moments in exact asymptotics under normal approximation},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {769--778},
     year = {2023},
     volume = {68},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a5/}
}
TY  - JOUR
AU  - L. V. Rozovskii
TI  - On the complete convergence of moments in exact asymptotics under normal approximation
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 769
EP  - 778
VL  - 68
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a5/
LA  - ru
ID  - TVP_2023_68_4_a5
ER  - 
%0 Journal Article
%A L. V. Rozovskii
%T On the complete convergence of moments in exact asymptotics under normal approximation
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 769-778
%V 68
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a5/
%G ru
%F TVP_2023_68_4_a5
L. V. Rozovskii. On the complete convergence of moments in exact asymptotics under normal approximation. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 4, pp. 769-778. http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a5/

[1] L. E. Baum, M. Katz, “Convergence rates in the law of large numbers”, Trans. Amer. Math. Soc., 120 (1965), 108–123 | DOI | MR | Zbl

[2] R. Chen, “A remark on the tail probability of a distribution”, J. Multivariate Anal., 8:2 (1978), 328–333 | DOI | MR | Zbl

[3] C. C. Heyde, “A supplement to the strong law of large numbers”, J. Appl. Probab., 12 (1975), 173–175 | DOI | MR | Zbl

[4] L. V. Rozovsky, “On exact asymptotics in the weak law of large numbers for sums of independent random variables with a common distribution function from the domain of attraction of a stable law. II”, Theory Probab. Appl., 49:4 (2005), 724–734 | DOI | DOI | MR | Zbl

[5] Weidong Liu, Zhengyan Lin, “Precise asymptotics for a new kind of complete moment convergence”, Statist. Probab. Lett., 76:16 (2006), 1787–1799 | DOI | MR | Zbl

[6] L. V. Rozovsky, “Sums of independent random variables with finite variances: moderate deviations and nonuniform bounds in the CLT”, J. Math. Sci. (N.Y.), 133:3 (2006), 1345–1355 | DOI | MR | Zbl

[7] L. V. Rozovsky, “On the convergence rate in precise asymptotics”, Theory Probab. Appl., 68:1 (2023), 46–61 | DOI | DOI | MR | Zbl

[8] V. V. Buldygin, O. I. Klesov, J. G. Steinebach, “Precise asymptotics over a small parameter for a series of large deviation probabilities”, Theory Stoch. Process., 13(29):1 (2007), 44–56 | MR | Zbl