On the complete convergence of moments in exact asymptotics under normal approximation
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 4, pp. 769-778
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For the sums of the form $\overline I_s(\varepsilon) = \sum_{n\geqslant 1}
n^{s-r/2}\mathbf{E}|S_n|^r\,\mathbf I[|S_n|\geqslant \varepsilon\,n^\gamma]$,
where $S_n = X_1 +\dots + X_n$, $X_n$, $n\geqslant 1$, is a sequence of
independent and identically distributed random variables (r.v.'s) $s+1
\geqslant 0$, $r\geqslant 0$, $\gamma>1/2$, and $\varepsilon>0$, new results
on their behavior are provided. As an example, we obtain the following
generalization of Heyde's result [J. Appl. Probab., 12 (1975),
pp. 173–175]: for any $r\geqslant 0$, $\lim_{\varepsilon\searrow
0}\varepsilon^{2}\sum_{n\geqslant 1} n^{-r/2} \mathbf{E}|S_n|^r\,\mathbf
I[|S_n|\geqslant \varepsilon\, n] =\mathbf{E} |\xi|^{r+2}$ if and only if
$\mathbf{E} X=0$ and $\mathbf{E} X^2=1$, and also
$\mathbf{E}|X|^{2+r/2}\infty$ if $r  4$, $\mathbf{E}|X|^r\infty$ if $r>4$,
and $\mathbf{E} X^4 \ln{(1+|X|)}\infty$ if $r=4$.
Here, $\xi$ is a standard Gaussian r.v.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
convergence rate
Keywords: exact asymptotics, complete convergence of moments.
                    
                  
                
                
                Keywords: exact asymptotics, complete convergence of moments.
@article{TVP_2023_68_4_a5,
     author = {L. V. Rozovskii},
     title = {On the complete convergence of moments in exact asymptotics under normal approximation},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {769--778},
     publisher = {mathdoc},
     volume = {68},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a5/}
}
                      
                      
                    TY - JOUR AU - L. V. Rozovskii TI - On the complete convergence of moments in exact asymptotics under normal approximation JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2023 SP - 769 EP - 778 VL - 68 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a5/ LA - ru ID - TVP_2023_68_4_a5 ER -
L. V. Rozovskii. On the complete convergence of moments in exact asymptotics under normal approximation. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 4, pp. 769-778. http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a5/
