Laplace expansion for Bartlett--Nanda--Pillai's test statistic and its error bound
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 4, pp. 705-718
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We construct asymptotic expansions for the distribution function of the
Bartlett–Nanda–Pillai statistic under the condition that the null
linear hypothesis is valid in a multivariate linear model. Computable estimates
of the accuracy of approximation are obtained via the Laplace approximation
method, which is generalized to integrals for matrix-valued functions.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Bartlett–Nanda–Pillai statistics, nonasymptotic analysis, Laplace approximation method.
                    
                  
                
                
                @article{TVP_2023_68_4_a2,
     author = {H. Wakaki and V. V. Ulyanov},
     title = {Laplace expansion for {Bartlett--Nanda--Pillai's} test statistic and its error bound},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {705--718},
     publisher = {mathdoc},
     volume = {68},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a2/}
}
                      
                      
                    TY - JOUR AU - H. Wakaki AU - V. V. Ulyanov TI - Laplace expansion for Bartlett--Nanda--Pillai's test statistic and its error bound JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2023 SP - 705 EP - 718 VL - 68 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a2/ LA - ru ID - TVP_2023_68_4_a2 ER -
H. Wakaki; V. V. Ulyanov. Laplace expansion for Bartlett--Nanda--Pillai's test statistic and its error bound. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 4, pp. 705-718. http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a2/
