Laplace expansion for Bartlett--Nanda--Pillai's test statistic and its error bound
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 4, pp. 705-718

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct asymptotic expansions for the distribution function of the Bartlett–Nanda–Pillai statistic under the condition that the null linear hypothesis is valid in a multivariate linear model. Computable estimates of the accuracy of approximation are obtained via the Laplace approximation method, which is generalized to integrals for matrix-valued functions.
Keywords: Bartlett–Nanda–Pillai statistics, nonasymptotic analysis, Laplace approximation method.
@article{TVP_2023_68_4_a2,
     author = {H. Wakaki and V. V. Ulyanov},
     title = {Laplace expansion for {Bartlett--Nanda--Pillai's} test statistic and its error bound},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {705--718},
     publisher = {mathdoc},
     volume = {68},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a2/}
}
TY  - JOUR
AU  - H. Wakaki
AU  - V. V. Ulyanov
TI  - Laplace expansion for Bartlett--Nanda--Pillai's test statistic and its error bound
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 705
EP  - 718
VL  - 68
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a2/
LA  - ru
ID  - TVP_2023_68_4_a2
ER  - 
%0 Journal Article
%A H. Wakaki
%A V. V. Ulyanov
%T Laplace expansion for Bartlett--Nanda--Pillai's test statistic and its error bound
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 705-718
%V 68
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a2/
%G ru
%F TVP_2023_68_4_a2
H. Wakaki; V. V. Ulyanov. Laplace expansion for Bartlett--Nanda--Pillai's test statistic and its error bound. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 4, pp. 705-718. http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a2/