Laplace expansion for Bartlett–Nanda–Pillai's test statistic and its error bound
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 4, pp. 705-718 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct asymptotic expansions for the distribution function of the Bartlett–Nanda–Pillai statistic under the condition that the null linear hypothesis is valid in a multivariate linear model. Computable estimates of the accuracy of approximation are obtained via the Laplace approximation method, which is generalized to integrals for matrix-valued functions.
Keywords: Bartlett–Nanda–Pillai statistics, nonasymptotic analysis, Laplace approximation method.
@article{TVP_2023_68_4_a2,
     author = {H. Wakaki and V. V. Ulyanov},
     title = {Laplace expansion for {Bartlett{\textendash}Nanda{\textendash}Pillai's} test statistic and its error bound},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {705--718},
     year = {2023},
     volume = {68},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a2/}
}
TY  - JOUR
AU  - H. Wakaki
AU  - V. V. Ulyanov
TI  - Laplace expansion for Bartlett–Nanda–Pillai's test statistic and its error bound
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 705
EP  - 718
VL  - 68
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a2/
LA  - ru
ID  - TVP_2023_68_4_a2
ER  - 
%0 Journal Article
%A H. Wakaki
%A V. V. Ulyanov
%T Laplace expansion for Bartlett–Nanda–Pillai's test statistic and its error bound
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 705-718
%V 68
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a2/
%G ru
%F TVP_2023_68_4_a2
H. Wakaki; V. V. Ulyanov. Laplace expansion for Bartlett–Nanda–Pillai's test statistic and its error bound. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 4, pp. 705-718. http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a2/

[1] T. Akita, Jinghua Jin, H. Wakaki, “High-dimensional Edgeworth expansion of a test statistic on independence and its error bound”, J. Multivariate Anal., 101:8 (2010), 1806–1813 | DOI | MR | Zbl

[2] Y. Fujikoshi, V. V. Ulyanov, “Error bounds for asymptotic expansions of Wilks' lambda distribution”, J. Multivariate Anal., 97:9 (2006), 1941–1957 | DOI | MR | Zbl

[3] Y. Fujikoshi, V. V. Ulyanov, Non-asymptotic analysis of approximations for multivariate statistics, SpringerBriefs Stat., Springer, Singapore, 2020, ix+130 pp. | DOI | MR | Zbl

[4] A. N. Kolmogorov, “K obosnovaniyu metoda naimenshikh kvadratov”, UMN, 1:1(11) (1946), 57–70 | MR | Zbl

[5] A. N. Kolmogorov, “Realnyi smysl rezultatov dispersionnogo analiza”, Trudy Vtorogo Vsesoyuznogo soveschaniya po matematicheskoi statistike (Tashkent, 1948), Izd-vo AN UzSSR, Tashkent, 1949, 240–269

[6] A. A. Lipatiev, V. V. Ulyanov, “On computable estimates for accuracy of approximation for the Bartlett–Nanda–Pillai statistic”, Siberian Adv. Math., 27:3 (2017), 153–159 | DOI | DOI | MR | Zbl

[7] A. A. Lipatiev, V. V. Ulyanov, “Nonasymptotic analysis of the Lawley–Hotelling statistic for high-dimensional data”, J. Math. Sci. (N.Y.), 258:6 (2021), 859–866 | DOI | MR | Zbl

[8] R. J. Muirhead, Aspect of multivariate statistical theory, Wiley Ser. Probab. Stat., John Wiley Sons, Inc., New York, 1982, xix+673 pp. | DOI | MR | Zbl

[9] V. V. Ulyanov, H. Wakaki, Y. Fujikoshi, “Berry–Esseen bound for high dimensional asymptotic approximation of Wilks' lambda distribution”, Statist. Probab. Lett., 76:12 (2006), 1191–1200 | DOI | MR | Zbl

[10] H. Wakaki, “Edgeworth expansion of Wilks' lambda statistic”, J. Multivariate Anal., 97:9 (2006), 1958–1964 | DOI | MR | Zbl

[11] H. Wakaki, Y. Fujikoshi, V. V. Ulyanov, “Asymptotic expansions of the distributions of MANOVA test statistics when the dimension is large”, Hiroshima Math. J., 44:3 (2014), 247–259 | DOI | MR | Zbl