@article{TVP_2023_68_4_a2,
author = {H. Wakaki and V. V. Ulyanov},
title = {Laplace expansion for {Bartlett{\textendash}Nanda{\textendash}Pillai's} test statistic and its error bound},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {705--718},
year = {2023},
volume = {68},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a2/}
}
TY - JOUR AU - H. Wakaki AU - V. V. Ulyanov TI - Laplace expansion for Bartlett–Nanda–Pillai's test statistic and its error bound JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2023 SP - 705 EP - 718 VL - 68 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a2/ LA - ru ID - TVP_2023_68_4_a2 ER -
H. Wakaki; V. V. Ulyanov. Laplace expansion for Bartlett–Nanda–Pillai's test statistic and its error bound. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 4, pp. 705-718. http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a2/
[1] T. Akita, Jinghua Jin, H. Wakaki, “High-dimensional Edgeworth expansion of a test statistic on independence and its error bound”, J. Multivariate Anal., 101:8 (2010), 1806–1813 | DOI | MR | Zbl
[2] Y. Fujikoshi, V. V. Ulyanov, “Error bounds for asymptotic expansions of Wilks' lambda distribution”, J. Multivariate Anal., 97:9 (2006), 1941–1957 | DOI | MR | Zbl
[3] Y. Fujikoshi, V. V. Ulyanov, Non-asymptotic analysis of approximations for multivariate statistics, SpringerBriefs Stat., Springer, Singapore, 2020, ix+130 pp. | DOI | MR | Zbl
[4] A. N. Kolmogorov, “K obosnovaniyu metoda naimenshikh kvadratov”, UMN, 1:1(11) (1946), 57–70 | MR | Zbl
[5] A. N. Kolmogorov, “Realnyi smysl rezultatov dispersionnogo analiza”, Trudy Vtorogo Vsesoyuznogo soveschaniya po matematicheskoi statistike (Tashkent, 1948), Izd-vo AN UzSSR, Tashkent, 1949, 240–269
[6] A. A. Lipatiev, V. V. Ulyanov, “On computable estimates for accuracy of approximation for the Bartlett–Nanda–Pillai statistic”, Siberian Adv. Math., 27:3 (2017), 153–159 | DOI | DOI | MR | Zbl
[7] A. A. Lipatiev, V. V. Ulyanov, “Nonasymptotic analysis of the Lawley–Hotelling statistic for high-dimensional data”, J. Math. Sci. (N.Y.), 258:6 (2021), 859–866 | DOI | MR | Zbl
[8] R. J. Muirhead, Aspect of multivariate statistical theory, Wiley Ser. Probab. Stat., John Wiley Sons, Inc., New York, 1982, xix+673 pp. | DOI | MR | Zbl
[9] V. V. Ulyanov, H. Wakaki, Y. Fujikoshi, “Berry–Esseen bound for high dimensional asymptotic approximation of Wilks' lambda distribution”, Statist. Probab. Lett., 76:12 (2006), 1191–1200 | DOI | MR | Zbl
[10] H. Wakaki, “Edgeworth expansion of Wilks' lambda statistic”, J. Multivariate Anal., 97:9 (2006), 1958–1964 | DOI | MR | Zbl
[11] H. Wakaki, Y. Fujikoshi, V. V. Ulyanov, “Asymptotic expansions of the distributions of MANOVA test statistics when the dimension is large”, Hiroshima Math. J., 44:3 (2014), 247–259 | DOI | MR | Zbl