Weakly supercritical branching process in random environment dying at a distant moment
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 4, pp. 665-690 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A functional limit theorem is proved for a weakly supercritical branching process in a random environment under the condition that the process becomes extinct after time $n\to \infty $.
Keywords: weakly supercritical branching process in a random environment, conditional functional limit theorems.
@article{TVP_2023_68_4_a0,
     author = {V. I. Afanasyev},
     title = {Weakly supercritical branching process in random environment dying at a distant moment},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {665--690},
     year = {2023},
     volume = {68},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a0/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - Weakly supercritical branching process in random environment dying at a distant moment
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 665
EP  - 690
VL  - 68
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a0/
LA  - ru
ID  - TVP_2023_68_4_a0
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T Weakly supercritical branching process in random environment dying at a distant moment
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 665-690
%V 68
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a0/
%G ru
%F TVP_2023_68_4_a0
V. I. Afanasyev. Weakly supercritical branching process in random environment dying at a distant moment. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 4, pp. 665-690. http://geodesic.mathdoc.fr/item/TVP_2023_68_4_a0/

[1] V. Bansaye, C. Böinghoff, “Small positive values for supercritical branching processes in random environment”, Ann. Inst. Henri Poincaré Probab. Stat., 50:3 (2014), 770–805 | DOI | MR | Zbl

[2] C. Böinghoff, “Limit theorems for strongly and intermediately supercritical branching processes in random environment with linear fractional offspring distributions”, Stochastic Process. Appl., 124:11 (2014), 3553–3577 | DOI | MR | Zbl

[3] V. I. Afanasev, “Slabo nadkriticheskii vetvyaschiisya protsess v neblagopriyatnoi sluchainoi srede”, Diskret. matem., 34:3 (2022), 3–19 | DOI

[4] V. I. Afanasyev, C. Böinghoff, G. Kersting, V. A. Vatutin, “Limit theorems for weakly subcritical branching processes in random environment”, J. Theoret. Probab., 25:3 (2012), 703–732 | DOI | MR | Zbl

[5] V. I. Afanasyev, “Limit theorems for a moderately subcritical branching process in a random environment”, Discrete Math. Appl., 8:1 (1998), 35–52 | DOI | DOI | MR | Zbl

[6] K. Hirano, “Determination of the limiting coefficient for exponential functionals of random walks with positive drift”, J. Math. Sci. Univ. Tokyo, 5:2 (1998), 299–332 | MR | Zbl

[7] J. Geiger, G. Kersting, V. A. Vatutin, “Limit theorems for subcritical branching processes in random environment”, Ann. Inst. Henri Poincaré Probab. Stat., 39:4 (2003), 593–620 | DOI | MR | Zbl

[8] K. B. Athreya, S. Karlin, “On branching processes with random environments. I. Extinction probabilities”, Ann. Math. Statist., 42:5 (1971), 1499–1520 | DOI | MR | Zbl

[9] V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl