Wiener spiral for volatility modeling
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 596-618 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Focusing on a lognormal stochastic volatility model, we present an elementary introduction to rough volatility modeling for financial assets with some new findings.
Keywords: fractional Brownian motion, implied volatility, leverage effect.
@article{TVP_2023_68_3_a9,
     author = {M. Fukasawa},
     title = {Wiener spiral for volatility modeling},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {596--618},
     year = {2023},
     volume = {68},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a9/}
}
TY  - JOUR
AU  - M. Fukasawa
TI  - Wiener spiral for volatility modeling
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 596
EP  - 618
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a9/
LA  - ru
ID  - TVP_2023_68_3_a9
ER  - 
%0 Journal Article
%A M. Fukasawa
%T Wiener spiral for volatility modeling
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 596-618
%V 68
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a9/
%G ru
%F TVP_2023_68_3_a9
M. Fukasawa. Wiener spiral for volatility modeling. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 596-618. http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a9/

[1] E. Alòs, J. A. León, J. Vives, “On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility”, Finance Stoch., 11:4 (2007), 571–589 | DOI | MR | Zbl

[2] O. E. Barndorff-Nielsen, A. Basse-O'Connor, “Quasi Ornstein–Uhlenbeck processes”, Bernoulli, 17:3 (2011), 916–941 | DOI | MR | Zbl

[3] O. E. Barndorff-Nielsen, J. Schmiegel, “Brownian semistationary processes and volatility/intermittency”, Advanced financial modelling, Radon Ser. Comput. Appl. Math., 8, Walter de Gruyter GmbH Co. KG, Berlin, 2009, 1–25 | DOI | MR | Zbl

[4] C. Bayer, P. Friz, J. Gatheral, “Pricing under rough volatility”, Quant. Finance, 16:6 (2016), 887–904 | DOI | MR | Zbl

[5] P. Carmona, L. Coutin, “Fractional Brownian motion and the Markov property”, Electron. Comm. Probab., 3 (1998), 95–107 | DOI | MR | Zbl

[6] P. Carr, Liuren Wu, “The finite moment log stable process and option pricing”, J. Finance, 58:2 (2003), 753–777 | DOI

[7] P. Cheridito, H. Kawaguchi, M. Maejima, “Fractional Ornstein–Uhlenbeck processes”, Electron. J. Probab., 8 (2003), 3, 14 pp. | DOI | MR | Zbl

[8] F. Comte, E. Renault, “Long memory in continuous-time stochastic volatility models”, Math. Finance, 8:4 (1998), 291–323 | DOI | MR | Zbl

[9] M. El Amrani, J. Guron, Does the term-structure of equity at-the-money skew really follow a power law?, SSRN, 2023 (v1 – 2022), 18 pp. | DOI

[10] O. El Euch, M. Fukasawa, M. Rosenbaum, “The microstructural foundations of leverage effect and rough volatility”, Finance Stoch., 22:2 (2018), 241–280 | DOI | MR | Zbl

[11] O. El Euch, M. Fukasawa, J. Gatheral, M. Rosenbaum, “Short-term at-the-money asymptotics under stochastic volatility models”, SIAM J. Financial Math., 10:2 (2019), 491–511 | DOI | MR | Zbl

[12] P. K. Friz, M. Hairer, A course on rough paths. With an introduction to regularity structures, Universitext, 2nd ed., Springer, Cham, 2020, xvi+346 pp. | DOI | MR | Zbl

[13] M. Fukasawa, “Volatility has to be rough”, Quant. Finance, 21:1 (2021), 1–8 | DOI | MR | Zbl

[14] M. Fukasawa, A. Hirano, “Refinement by reducing and reusing random numbers of the Hybrid scheme for Brownian semistationary processes”, Quant. Finance, 21:7 (2021), 1127–1146 | DOI | MR | Zbl

[15] M. Fukasawa, B. Horvath, P. Tankov, Hedging under rough volatility, 2021, 15 pp., arXiv: 2105.04073

[16] M. Fukasawa, T. Takabatake, R. Westphal, “Consistent estimation for fractional stochastic volatility model under high-frequency asymptotics”, Math. Finance, 32:4 (2022), 1086–1132 | DOI | MR

[17] J. Gatheral, T. Jaisson, M. Rosenbaum, “Volatility is rough”, Quant. Finance, 18:6 (2018), 933–949 | DOI | MR | Zbl

[18] J. Garnier, K. Sølna, “Option pricing under fast-varying long-memory stochastic volatility”, Math. Finance, 29:1 (2019), 39–83 | DOI | MR | Zbl

[19] G. H. Hardy, J. E. Littlewood, “Some properties of fractional integrals. I”, Math. Z., 27:1 (1928), 565–606 | DOI | MR | Zbl

[20] B. Horvath, A. Jacquier, A. Muguruza, Functional central limit theorems for rough volatility, 2019 (v1 – 2017), 30 pp., arXiv: 1711.03078

[21] J. Jacod, A. N. Shiryaev, Limit theorems for stochastic processes, Grundlehren Math. Wiss., 288, 2nd ed., Springer-Verlag, Berlin, 2003, xx+661 pp. | DOI | MR | MR | MR | Zbl | Zbl

[22] P. Jusselin, M. Rosenbaum, “No-arbitrage implies power-law market impact and rough volatility”, Math. Finance, 30:4 (2020), 1309–1336 | DOI | MR | Zbl

[23] A. N. Kolmogorov, “Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum”, Dokl. AN SSSR, 26 (1940), 115–118 | MR | Zbl

[24] B. B. Mandelbrot, J. W. Van Ness, “Fractional Brownian motions, fractional noises and applications”, SIAM Rev., 10:4 (1968), 422–437 | DOI | MR | Zbl

[25] P. A. Mykland, “Asymptotic expansions and bootstrapping distributions for dependent variables: a martingale approach”, Ann. Statist., 20:2 (1992), 623–654 | DOI | MR | Zbl

[26] Y. S. Mishura, Stochastic calculus for fractional Brownian motion and related processes, Lecture Notes in Math., 1929, Springer-Verlag, Berlin, 2008, xviii+393 pp. | DOI | MR | Zbl

[27] A. A. Muravlev, “Representation of a fractional Brownian motion in terms of an infinite-dimensional Ornstein–Uhlenbeck process”, Russian Math. Surveys, 66:2 (2011), 439–441 | DOI | DOI | MR | Zbl

[28] I. Nourdin, Selected aspects of fractional Brownian motion, Bocconi Springer Ser., 4, Springer, Milan, 2012, x+122 pp. | DOI | MR | Zbl

[29] J. Picard, “Representation formulae for the fractional Brownian motion”, Séminaire de probabilités XLIII, Lecture Notes in Math., 2006, Springer-Verlag, Berlin, 2011, 3–70 | DOI | MR | Zbl

[30] V. Pipiras, M. S. Taqqu, “Deconvolution of fractional Brownian motion”, J. Time Ser. Anal., 23:4 (2002), 487–501 | DOI | MR | Zbl

[31] Ph. E. Protter, Stochastic integration and differential equations, Stoch. Model. Appl. Probab., 21, 2nd ed., Springer-Verlag, Berlin, 2005, xiv+419 pp. | DOI | MR | Zbl

[32] L. C. G. Rogers, Things we think we know, 2019, 12 pp. https://www.skokholm.co.uk/lcgr/downloadable-papers/

[33] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives. Theory and applications, Gordon and Breach. Sci. Publ., New York, 1993, xxxvi+976 pp. | MR | MR | Zbl | Zbl

[34] T. Ugai, Limit distributions for the discretization error of stochastic Volterra equations, Master thesis, Graduate School of Engineering Science, Osaka Univ., 2022