On characterization of quantum Gaussian measurement channels
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 586-595 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We provide a characterization of measurement (quantum-classical) channels, which map Gaussian states to Gaussian probability distributions.
Keywords: quantum measurement channel, Gaussian distribution, operator characteristic function.
@article{TVP_2023_68_3_a8,
     author = {A. S. Holevo},
     title = {On characterization of quantum {Gaussian} measurement channels},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {586--595},
     year = {2023},
     volume = {68},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a8/}
}
TY  - JOUR
AU  - A. S. Holevo
TI  - On characterization of quantum Gaussian measurement channels
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 586
EP  - 595
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a8/
LA  - ru
ID  - TVP_2023_68_3_a8
ER  - 
%0 Journal Article
%A A. S. Holevo
%T On characterization of quantum Gaussian measurement channels
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 586-595
%V 68
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a8/
%G ru
%F TVP_2023_68_3_a8
A. S. Holevo. On characterization of quantum Gaussian measurement channels. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 586-595. http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a8/

[1] A. Kolmogoroff, “La transformation de Laplace dans les espaces linéaires”, C. R. Acad. Sci. Paris, 200 (1935), 1717–1718 | MR | Zbl | Zbl

[2] The Nobel prize in physics 2022: Entangled states — from theory to technology https://www.nobelprize.org/prizes/physics/2022/press-release/

[3] A. Holevo, Probabilistic and statistical aspects of quantum theory, Quad./Monogr., 1, 2nd ed., Edizioni della Normale, Pisa, 2011, xvi+323 pp. | DOI | MR | Zbl

[4] A. S. Holevo, Quantum systems, channels, information — a mathematical introduction, Texts Monogr. Theor. Phys., 2nd ed., De Gruyter, Berlin/Boston, 2019, xv+350 pp. | DOI | MR | Zbl

[5] G. De Palma, A. Mari, V. Giovannetti, A. S. Holevo, “Normal form decomposition for Gaussian-to-Gaussian superoperators”, J. Math. Phys., 56:5 (2015), 052202, 19 pp. | DOI | MR | Zbl

[6] A. S. Holevo, “On a characterization of Gaussian transition operators”, Theory Probab. Appl., 61:4 (2017), 715–718 | DOI | DOI | MR | Zbl

[7] G. A. Alekseev, K. A. Afonin, V. I. Bogachev, “On Gaussian transition operators”, Dokl. Math., 104:2 (2021), 229–233 | DOI | DOI | MR | Zbl

[8] A. S. Holevo, “Structure of a general quantum Gaussian observable”, Proc. Steklov Inst. Math., 313 (2021), 70–77 | DOI | DOI | MR | Zbl

[9] A. Serafini, Quantum continuous variables. A primer of theoretical methods, CRC Press, Boca Raton, FL, 2017, xviii+349 pp. | DOI | MR | Zbl

[10] A. S. Holevo, “On quasiequivalence of locally normal states”, Theoret. and Math. Phys., 13:2 (1972), 1071–1082 | DOI | MR | Zbl

[11] C. L. Mehta, E. C. G. Sudarshan, “Relation between quantum and semiclassical description of optical coherence”, Phys. Rev. (2), 138:1 (1965), B274–B280 | DOI | MR