@article{TVP_2023_68_3_a7,
author = {N. E. Kordzakhia and A. A. Novikov and A. N. Shiryaev},
title = {Kolmogorov's inequality for the maximum of the sum of random variables and its martingale analogues},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {565--585},
year = {2023},
volume = {68},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a7/}
}
TY - JOUR AU - N. E. Kordzakhia AU - A. A. Novikov AU - A. N. Shiryaev TI - Kolmogorov's inequality for the maximum of the sum of random variables and its martingale analogues JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2023 SP - 565 EP - 585 VL - 68 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a7/ LA - ru ID - TVP_2023_68_3_a7 ER -
%0 Journal Article %A N. E. Kordzakhia %A A. A. Novikov %A A. N. Shiryaev %T Kolmogorov's inequality for the maximum of the sum of random variables and its martingale analogues %J Teoriâ veroâtnostej i ee primeneniâ %D 2023 %P 565-585 %V 68 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a7/ %G ru %F TVP_2023_68_3_a7
N. E. Kordzakhia; A. A. Novikov; A. N. Shiryaev. Kolmogorov's inequality for the maximum of the sum of random variables and its martingale analogues. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 565-585. http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a7/
[1] L. Alili, P. Patie, “On the first crossing times of a Brownian motion and a family of continuous curves”, C. R. Math. Acad. Sci. Paris, 340:3 (2005), 225–228 | DOI | MR | Zbl
[2] F. Aurzada, T. Kramm, “First exit of Brownian motion from a one-sided moving boundary”, High dimensional probability VI (Banff, AB, 2011), Progr. Probab., 66, Basel, Birkhäuser/Springer, 2013, 213–217 | DOI | MR | Zbl
[3] J. Azéma, R. F. Gundy, M. Yor, “Sur l'intégrabilité uniforme des martingales continues”, Séminaire de probabilités XIV (Paris, 1978/79), Lecture Notes in Math., 784, Springer, Berlin, 1980, 53–61 | DOI | MR | Zbl
[4] L. Bachelier, “Théorie de la spéculation”, Ann. Sci. École Norm. Sup. (3), 17 (1900), 21–86 | DOI | MR | Zbl
[5] O. E. Barndorff-Nielsen, A. Shiryaev, Change of time and change of measure, Adv. Ser. Statist. Sci. Appl. Probab., 13, World Scientific, Hackensack, NJ, 2010, xvi+306 pp. | DOI | MR | Zbl
[6] B. Bercu, B. Delyon, E. Rio, Concentration inequalities for sums and martingales, SpringerBriefs Math., Springer, Cham, 2015, x+120 pp. | DOI | MR | Zbl
[7] S. Bernstein, “Sur les sommes de quantités dépendantes”, Izv. AN SSSR. VI ser., 20:15-17 (1926), 1459–1478 | Zbl
[8] S. Bernstein, “Sur l'extension du théorème limite du calcul des probabilités aux sommes de quantités dépendantes”, Math. Ann., 97:1 (1927), 1–59 | DOI | MR | Zbl
[9] S. Bernstein, “Principes de la théorie des équations différentielles stochastiques. I”, Tr. Fiz.-matem. in-ta im. V. A. Steklova, 5, Izd-vo AN SSSR, L., 1934, 95–124 | Zbl
[10] D. L. Burkholder, “Distribution function inequalities for martingales”, Ann. Probab., 1 (1973), 19–42 | DOI | MR | Zbl
[11] D. L. Burkholder, R. F. Gundy, “Extrapolation and interpolation of quasi-linear operators on martingales”, Acta Math., 124:1 (1970), 249–304 | DOI | MR | Zbl | Zbl
[12] Yuan Shih Chow, H. Teicher, Probability theory. Independence, interchangeability, martingales, Springer Texts Statist., 3rd ed., Springer-Verlag, New York–Heidelberg, 2003, xxii+488 pp. | DOI | MR | Zbl
[13] K. E. Dambis, “On the decomposition of continuous submartingales”, Theory Probab. Appl., 10:3 (1965), 401–410 | DOI | MR | Zbl
[14] B. Davis, “On the integrability of the martingale square function”, Israel J. Math., 8 (1970), 187–190 | DOI | MR | Zbl
[15] B. Davis, “On the $L^p$ norms of stochastic integrals and other martingales”, Duke Math. J., 43:4 (1976), 697–704 | DOI | MR | Zbl
[16] D. E. Denisov, G. Hinrichs, A. I. Sakhanenko, V. I. Wachtel, “Crossing an asymptotically square-root boundary by the Brownian motion”, Proc. Steklov Inst. Math., 316 (2022), 105–120 | DOI | DOI | MR | Zbl
[17] J. L. Doob, Stochastic processes, John Wiley Sons, Inc., New York; Chapman Hall, Ltd., London, 1953, viii+654 pp. | MR | MR | Zbl
[18] L. E. Dubins, G. Schwarz, “On continuous martingales”, Proc. Nat. Acad. Sci. U.S.A., 53:5 (1965), 913–916 | DOI | MR | Zbl
[19] K. D. Elworthy, Xu-Mei Li, M. Yor, “On the tails of the supremum and the quadratic variation of strictly local martingales”, Séminaire de probabilités XXXI, Lecture Notes in Math., 1655, Springer-Verlag, Berlin, 1997, 113–125 | DOI | MR | Zbl
[20] W. Feller, An introduction to probability theory and its applications, v. II, 2nd ed., John Wiley Sons, Inc., New York–London–Sydney, 1971, xxiv+669 pp. | MR | MR | Zbl | Zbl
[21] L. I. Galtchouk, A. A. Novikov, “On Wald's equation. Discrete time case”, Séminaire de probabilités XXXI, Lecture Notes in Math., 1655, Springer-Verlag, Berlin, 1997, 126–135 ; preprint, Strasbourg Univ., 1994 | DOI | MR | Zbl
[22] J. Gartner, Upper and lower bounds for brownian first exit densities and propagation of wave front, Berlin Univ., 1981
[23] D. Gilat, “The best bound in the $L\log L$ inequality of Hardy and Littlewood and its martingale counterpart”, Proc. Amer. Math. Soc., 97:3 (1986), 429–436 | DOI | MR | Zbl
[24] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, 8th ed., Elsevier/Academic Press, Amsterdam, 2015, xlvi+1133 pp. | MR | Zbl
[25] P. E. Greenwood, A. A. Novikov, “One-sided boundary crossing for processes with independent increments”, Teoriya veroyatn. i ee primen., 31:2 (1986), 266–277 ; Theory Probab. Appl., 31:2 (1987), 221–232 | MR | Zbl | DOI
[26] O. Kallenberg, Foundations of modern probability, Probab. Appl. (N. Y.), 2nd ed., Springer-Verlag, New York, 2002, xx+638 pp. | DOI | MR | Zbl
[27] I. Karatzas, S. E. Shreve, Brownian motion and stochastic calculus, Grad. Texts in Math., 113, 2nd ed., Springer-Verlag, New York, 1991, xxiii+470 pp. | DOI | MR | Zbl
[28] N. Kazamaki, “Changes of time, stochastic integrals, and weak martingales”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 22 (1972), 25–32 | DOI | MR | Zbl
[29] A. Ya. Khinchin, A. N. Kolmogorov, “O skhodimosti ryadov, chleny kotorykh opredelyayutsya sluchaem”: A. N. Kolmogorov, Izbrannye trudy, v. 2, Teoriya veroyatnostei i matematicheskaya statistika, Nauka, M., 2005, 7–16 ; A. Khintchine, A. Kolmogoroff, “Über Konvergenz von Reihen, deren Glieder durch den Zufall bestimmt werden”, Matem. sb., 32:4 (1925), 668–677 ; A. Ya. Khinchin, A. N. Kolmogorov, “On convergence of series whose terms are determined by random events”, Selected works of A. N. Kolmogorov, т. 2, Math. Appl. (Soviet Ser.), 26, Kluwer Acad. Publ., Dordrecht, 1992, 1–10 | MR | Zbl | DOI | MR | Zbl
[30] F. Klebaner, R. Liptser, “When a stochastic exponential is a true martingale. Extension of the Beneš method”, Theory Probab. Appl., 58:1 (2014), 38–62 | DOI | DOI | MR | Zbl
[31] F. Kühn, R. L. Schilling, “Maximal inequalities and some applications”, Probab. Surv., 20 (2023), 382–485 ; (2023 (v1 – 2022)), 105 pp., arXiv: 2204.04690 | DOI | MR | Zbl
[32] E. Lenglart, “Rélation de domination entre deux processus”, Ann. Inst. H. Poincaré Sect. B (N. S.), 13:2 (1977), 171–179 | MR | Zbl
[33] P. Lévy, Théorie de l'addition des variables aléatoires, Monographies des probabilités, 2ème éd., Gauthier-Villars, Paris, 1954, xx+387 pp. | Zbl
[34] R. Sh. Liptser, A. N. Shiryayev, Theory of martingales, Math. Appl. (Soviet Ser.), 49, Kluwer Acad. Publ., Dordrecht, 1989, xiv+792 pp. | DOI | MR | MR | Zbl | Zbl
[35] C. Marinelli, M. Röckner, “On maximal inequalities for purely discontinuous martingales in infinite dimensions”, Séminaire de probabilités XLVI, Lecture Notes in Math., 2123, Springer, Cham, 2014, 293–315 | DOI | MR | Zbl
[36] P. W. Millar, “Martingale integrals”, Trans. Amer. Math. Soc., 133:1 (1968), 145–166 | DOI | MR | Zbl
[37] A. A. Novikov, “On moment inequalities for stochastic integrals”, Theory Probab. Appl., 16:3 (1971), 538–541 | DOI | MR | Zbl
[38] A. A. Novikov, “On stopping times for a Wiener process”, Theory Probab. Appl., 16:3 (1971), 449–456 ; “Исправления к статье: “Об одном тождестве для стохастических интегралов” ”, 18:3 (1973), 680 | DOI | MR | Zbl
[39] A. A. Novikov, “On an identity for stochastic integrals”, Theory Probab. Appl., 17:4 (1973), 717–720 | DOI | MR | Zbl
[40] A. A. Novikov, “On moment inequalities and identities for stochastic integrals”, Proceedings of the second Japan–USSR symposium on probability theory (Kyoto, 1972), Lecture Notes in Math., 330, Springer, Berlin, 1973, 333–339 | DOI | MR | Zbl
[41] A. A. Novikov, “On discontinuous martingales”, Theory Probab. Appl., 20:1 (1975), 11–26 | DOI | MR | Zbl
[42] A. A. Novikov, “On conditions for uniform integrability of continuous non-negative martingales”, Theory Probab. Appl., 24:4 (1980), 820–824 | DOI | MR | Zbl
[43] A. A. Novikov, “A martingale approach in problems on first crossing time of nonlinear boundaries”, Proc. Steklov Inst. Math., 158 (1983), 141–163 | MR | Zbl
[44] A. A. Novikov, “A martingale approach to first passage problems and a new condition for Wald's identity”, Stochastic differential systems (Visegrád, 1980), Lecture Notes in Control and Inform. Sci., 36, Springer, Berlin–New York, 1981, 146–156 | DOI | MR | Zbl
[45] A. A. Novikov, “The crossing time of a one-sided nonlinear boundary by sums of independent random variables”, Theory Probab. Appl., 27:4 (1983), 688–702 | DOI | MR | Zbl
[46] A. A. Novikov, “Martingales, Tauberian theorem, and strategies of gambling”, Theory Probab. Appl., 41:4 (1997), 716–729 | DOI | DOI | MR | Zbl
[47] K. Oldham, J. Myland, J. Spanier, An atlas of functions. With Equator, the atlas function calculator, Springer, New York, 2009, xi+748 pp. | DOI | MR | Zbl
[48] A. Osȩkowski, “Sharp maximal inequalities for the martingale square bracket”, Stochastics, 82:6 (2010), 589–605 | DOI | MR | Zbl
[49] A. Osȩkowski, Sharp martingale and semimartingale inequalities, IMPAN Monogr. Mat. (N. S.), 72, Birkhäuser/Springer Basel AG, Basel, 2012, xii+462 pp. | DOI | MR | Zbl
[50] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Grundlehren Math. Wiss., 293, Springer-Verlag, Berlin, 1991, ix+533 pp. | DOI | MR | Zbl
[51] W. Schachermayer, F. Stebegg, “The sharp constant for the Burkholder–Davis–Gundy inequality and non-smooth pasting”, Bernoulli, 24:4A (2018), 2499–2530 | DOI | MR | Zbl
[52] L. A. Shepp, “A first passage problem for the Wiener process”, Ann. Math. Statist., 38:6 (1967), 1912–1914 | DOI | MR | Zbl
[53] A. N. Shiryaev, “Andrei Nikolaevich Kolmogorov (April 25, 1903–October 20, 1987). In memoriam”, Theory Probab. Appl., 34:1 (1989), 1–99 | DOI | MR | Zbl
[54] A. N. Shiryaev, “O martingalnykh metodakh v zadachakh o peresechenii granits brounovskim dvizheniem”, Sovr. probl. matem., 8, MIAN, M., 2007, 3–78 | DOI | Zbl
[55] A. N. Shiryaev, Optimal stopping rules, Stoch. Model. Appl. Probab., 8, Reprint of the 3rd ed., Springer-Verlag, Berlin, 2008, xii+217 pp. | DOI | MR | MR | Zbl | Zbl
[56] A. N. Shiryaev, Probability-2, Grad. Texts in Math., 95, 3rd ed., Springer, New York, NY, 2019, x+348 pp. | DOI | MR | Zbl
[57] K. Uchiyama, “Brownian first exit from and sojourn over one sided moving boundary and application”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 54:1 (1980), 75–116 | DOI | MR | Zbl
[58] J. Ville, “Étude critique de la notion de collectif”, Monographies des probabilités, 3, Gauthier-Villars, Paris, 1939, 144 pp. | Zbl
[59] A. Wald, “Sequential tests of statistical hypotheses”, Ann. Math. Statist., 16:2 (1945), 117–186 | DOI | MR | Zbl