Kolmogorov's inequality for the maximum of the sum of random variables and its martingale analogues
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 565-585

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a survey of the results related to extensions of the Kolmogorov inequality for the distribution of the absolute value of the maximum of the sum of centered independent random variables to the case of martingales considered at random stopping times.
Keywords: maximal inequality, Kolmogorov inequality, Doob inequality, stopping time, moment martingale identities, exponential martingale identity.
@article{TVP_2023_68_3_a7,
     author = {N. E. Kordzakhia and A. A. Novikov and A. N. Shiryaev},
     title = {Kolmogorov's inequality for the maximum of the sum of random variables and its martingale analogues},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {565--585},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a7/}
}
TY  - JOUR
AU  - N. E. Kordzakhia
AU  - A. A. Novikov
AU  - A. N. Shiryaev
TI  - Kolmogorov's inequality for the maximum of the sum of random variables and its martingale analogues
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 565
EP  - 585
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a7/
LA  - ru
ID  - TVP_2023_68_3_a7
ER  - 
%0 Journal Article
%A N. E. Kordzakhia
%A A. A. Novikov
%A A. N. Shiryaev
%T Kolmogorov's inequality for the maximum of the sum of random variables and its martingale analogues
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 565-585
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a7/
%G ru
%F TVP_2023_68_3_a7
N. E. Kordzakhia; A. A. Novikov; A. N. Shiryaev. Kolmogorov's inequality for the maximum of the sum of random variables and its martingale analogues. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 565-585. http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a7/