Kolmogorov's inequality for the maximum of the sum of random variables and its martingale analogues
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 565-585 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a survey of the results related to extensions of the Kolmogorov inequality for the distribution of the absolute value of the maximum of the sum of centered independent random variables to the case of martingales considered at random stopping times.
Keywords: maximal inequality, Kolmogorov inequality, Doob inequality, stopping time, moment martingale identities, exponential martingale identity.
@article{TVP_2023_68_3_a7,
     author = {N. E. Kordzakhia and A. A. Novikov and A. N. Shiryaev},
     title = {Kolmogorov's inequality for the maximum of the sum of random variables and its martingale analogues},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {565--585},
     year = {2023},
     volume = {68},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a7/}
}
TY  - JOUR
AU  - N. E. Kordzakhia
AU  - A. A. Novikov
AU  - A. N. Shiryaev
TI  - Kolmogorov's inequality for the maximum of the sum of random variables and its martingale analogues
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 565
EP  - 585
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a7/
LA  - ru
ID  - TVP_2023_68_3_a7
ER  - 
%0 Journal Article
%A N. E. Kordzakhia
%A A. A. Novikov
%A A. N. Shiryaev
%T Kolmogorov's inequality for the maximum of the sum of random variables and its martingale analogues
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 565-585
%V 68
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a7/
%G ru
%F TVP_2023_68_3_a7
N. E. Kordzakhia; A. A. Novikov; A. N. Shiryaev. Kolmogorov's inequality for the maximum of the sum of random variables and its martingale analogues. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 565-585. http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a7/

[1] L. Alili, P. Patie, “On the first crossing times of a Brownian motion and a family of continuous curves”, C. R. Math. Acad. Sci. Paris, 340:3 (2005), 225–228 | DOI | MR | Zbl

[2] F. Aurzada, T. Kramm, “First exit of Brownian motion from a one-sided moving boundary”, High dimensional probability VI (Banff, AB, 2011), Progr. Probab., 66, Basel, Birkhäuser/Springer, 2013, 213–217 | DOI | MR | Zbl

[3] J. Azéma, R. F. Gundy, M. Yor, “Sur l'intégrabilité uniforme des martingales continues”, Séminaire de probabilités XIV (Paris, 1978/79), Lecture Notes in Math., 784, Springer, Berlin, 1980, 53–61 | DOI | MR | Zbl

[4] L. Bachelier, “Théorie de la spéculation”, Ann. Sci. École Norm. Sup. (3), 17 (1900), 21–86 | DOI | MR | Zbl

[5] O. E. Barndorff-Nielsen, A. Shiryaev, Change of time and change of measure, Adv. Ser. Statist. Sci. Appl. Probab., 13, World Scientific, Hackensack, NJ, 2010, xvi+306 pp. | DOI | MR | Zbl

[6] B. Bercu, B. Delyon, E. Rio, Concentration inequalities for sums and martingales, SpringerBriefs Math., Springer, Cham, 2015, x+120 pp. | DOI | MR | Zbl

[7] S. Bernstein, “Sur les sommes de quantités dépendantes”, Izv. AN SSSR. VI ser., 20:15-17 (1926), 1459–1478 | Zbl

[8] S. Bernstein, “Sur l'extension du théorème limite du calcul des probabilités aux sommes de quantités dépendantes”, Math. Ann., 97:1 (1927), 1–59 | DOI | MR | Zbl

[9] S. Bernstein, “Principes de la théorie des équations différentielles stochastiques. I”, Tr. Fiz.-matem. in-ta im. V. A. Steklova, 5, Izd-vo AN SSSR, L., 1934, 95–124 | Zbl

[10] D. L. Burkholder, “Distribution function inequalities for martingales”, Ann. Probab., 1 (1973), 19–42 | DOI | MR | Zbl

[11] D. L. Burkholder, R. F. Gundy, “Extrapolation and interpolation of quasi-linear operators on martingales”, Acta Math., 124:1 (1970), 249–304 | DOI | MR | Zbl | Zbl

[12] Yuan Shih Chow, H. Teicher, Probability theory. Independence, interchangeability, martingales, Springer Texts Statist., 3rd ed., Springer-Verlag, New York–Heidelberg, 2003, xxii+488 pp. | DOI | MR | Zbl

[13] K. E. Dambis, “On the decomposition of continuous submartingales”, Theory Probab. Appl., 10:3 (1965), 401–410 | DOI | MR | Zbl

[14] B. Davis, “On the integrability of the martingale square function”, Israel J. Math., 8 (1970), 187–190 | DOI | MR | Zbl

[15] B. Davis, “On the $L^p$ norms of stochastic integrals and other martingales”, Duke Math. J., 43:4 (1976), 697–704 | DOI | MR | Zbl

[16] D. E. Denisov, G. Hinrichs, A. I. Sakhanenko, V. I. Wachtel, “Crossing an asymptotically square-root boundary by the Brownian motion”, Proc. Steklov Inst. Math., 316 (2022), 105–120 | DOI | DOI | MR | Zbl

[17] J. L. Doob, Stochastic processes, John Wiley Sons, Inc., New York; Chapman Hall, Ltd., London, 1953, viii+654 pp. | MR | MR | Zbl

[18] L. E. Dubins, G. Schwarz, “On continuous martingales”, Proc. Nat. Acad. Sci. U.S.A., 53:5 (1965), 913–916 | DOI | MR | Zbl

[19] K. D. Elworthy, Xu-Mei Li, M. Yor, “On the tails of the supremum and the quadratic variation of strictly local martingales”, Séminaire de probabilités XXXI, Lecture Notes in Math., 1655, Springer-Verlag, Berlin, 1997, 113–125 | DOI | MR | Zbl

[20] W. Feller, An introduction to probability theory and its applications, v. II, 2nd ed., John Wiley Sons, Inc., New York–London–Sydney, 1971, xxiv+669 pp. | MR | MR | Zbl | Zbl

[21] L. I. Galtchouk, A. A. Novikov, “On Wald's equation. Discrete time case”, Séminaire de probabilités XXXI, Lecture Notes in Math., 1655, Springer-Verlag, Berlin, 1997, 126–135 ; preprint, Strasbourg Univ., 1994 | DOI | MR | Zbl

[22] J. Gartner, Upper and lower bounds for brownian first exit densities and propagation of wave front, Berlin Univ., 1981

[23] D. Gilat, “The best bound in the $L\log L$ inequality of Hardy and Littlewood and its martingale counterpart”, Proc. Amer. Math. Soc., 97:3 (1986), 429–436 | DOI | MR | Zbl

[24] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, 8th ed., Elsevier/Academic Press, Amsterdam, 2015, xlvi+1133 pp. | MR | Zbl

[25] P. E. Greenwood, A. A. Novikov, “One-sided boundary crossing for processes with independent increments”, Teoriya veroyatn. i ee primen., 31:2 (1986), 266–277 ; Theory Probab. Appl., 31:2 (1987), 221–232 | MR | Zbl | DOI

[26] O. Kallenberg, Foundations of modern probability, Probab. Appl. (N. Y.), 2nd ed., Springer-Verlag, New York, 2002, xx+638 pp. | DOI | MR | Zbl

[27] I. Karatzas, S. E. Shreve, Brownian motion and stochastic calculus, Grad. Texts in Math., 113, 2nd ed., Springer-Verlag, New York, 1991, xxiii+470 pp. | DOI | MR | Zbl

[28] N. Kazamaki, “Changes of time, stochastic integrals, and weak martingales”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 22 (1972), 25–32 | DOI | MR | Zbl

[29] A. Ya. Khinchin, A. N. Kolmogorov, “O skhodimosti ryadov, chleny kotorykh opredelyayutsya sluchaem”: A. N. Kolmogorov, Izbrannye trudy, v. 2, Teoriya veroyatnostei i matematicheskaya statistika, Nauka, M., 2005, 7–16 ; A. Khintchine, A. Kolmogoroff, “Über Konvergenz von Reihen, deren Glieder durch den Zufall bestimmt werden”, Matem. sb., 32:4 (1925), 668–677 ; A. Ya. Khinchin, A. N. Kolmogorov, “On convergence of series whose terms are determined by random events”, Selected works of A. N. Kolmogorov, т. 2, Math. Appl. (Soviet Ser.), 26, Kluwer Acad. Publ., Dordrecht, 1992, 1–10 | MR | Zbl | DOI | MR | Zbl

[30] F. Klebaner, R. Liptser, “When a stochastic exponential is a true martingale. Extension of the Beneš method”, Theory Probab. Appl., 58:1 (2014), 38–62 | DOI | DOI | MR | Zbl

[31] F. Kühn, R. L. Schilling, “Maximal inequalities and some applications”, Probab. Surv., 20 (2023), 382–485 ; (2023 (v1 – 2022)), 105 pp., arXiv: 2204.04690 | DOI | MR | Zbl

[32] E. Lenglart, “Rélation de domination entre deux processus”, Ann. Inst. H. Poincaré Sect. B (N. S.), 13:2 (1977), 171–179 | MR | Zbl

[33] P. Lévy, Théorie de l'addition des variables aléatoires, Monographies des probabilités, 2ème éd., Gauthier-Villars, Paris, 1954, xx+387 pp. | Zbl

[34] R. Sh. Liptser, A. N. Shiryayev, Theory of martingales, Math. Appl. (Soviet Ser.), 49, Kluwer Acad. Publ., Dordrecht, 1989, xiv+792 pp. | DOI | MR | MR | Zbl | Zbl

[35] C. Marinelli, M. Röckner, “On maximal inequalities for purely discontinuous martingales in infinite dimensions”, Séminaire de probabilités XLVI, Lecture Notes in Math., 2123, Springer, Cham, 2014, 293–315 | DOI | MR | Zbl

[36] P. W. Millar, “Martingale integrals”, Trans. Amer. Math. Soc., 133:1 (1968), 145–166 | DOI | MR | Zbl

[37] A. A. Novikov, “On moment inequalities for stochastic integrals”, Theory Probab. Appl., 16:3 (1971), 538–541 | DOI | MR | Zbl

[38] A. A. Novikov, “On stopping times for a Wiener process”, Theory Probab. Appl., 16:3 (1971), 449–456 ; “Исправления к статье: “Об одном тождестве для стохастических интегралов” ”, 18:3 (1973), 680 | DOI | MR | Zbl

[39] A. A. Novikov, “On an identity for stochastic integrals”, Theory Probab. Appl., 17:4 (1973), 717–720 | DOI | MR | Zbl

[40] A. A. Novikov, “On moment inequalities and identities for stochastic integrals”, Proceedings of the second Japan–USSR symposium on probability theory (Kyoto, 1972), Lecture Notes in Math., 330, Springer, Berlin, 1973, 333–339 | DOI | MR | Zbl

[41] A. A. Novikov, “On discontinuous martingales”, Theory Probab. Appl., 20:1 (1975), 11–26 | DOI | MR | Zbl

[42] A. A. Novikov, “On conditions for uniform integrability of continuous non-negative martingales”, Theory Probab. Appl., 24:4 (1980), 820–824 | DOI | MR | Zbl

[43] A. A. Novikov, “A martingale approach in problems on first crossing time of nonlinear boundaries”, Proc. Steklov Inst. Math., 158 (1983), 141–163 | MR | Zbl

[44] A. A. Novikov, “A martingale approach to first passage problems and a new condition for Wald's identity”, Stochastic differential systems (Visegrád, 1980), Lecture Notes in Control and Inform. Sci., 36, Springer, Berlin–New York, 1981, 146–156 | DOI | MR | Zbl

[45] A. A. Novikov, “The crossing time of a one-sided nonlinear boundary by sums of independent random variables”, Theory Probab. Appl., 27:4 (1983), 688–702 | DOI | MR | Zbl

[46] A. A. Novikov, “Martingales, Tauberian theorem, and strategies of gambling”, Theory Probab. Appl., 41:4 (1997), 716–729 | DOI | DOI | MR | Zbl

[47] K. Oldham, J. Myland, J. Spanier, An atlas of functions. With Equator, the atlas function calculator, Springer, New York, 2009, xi+748 pp. | DOI | MR | Zbl

[48] A. Osȩkowski, “Sharp maximal inequalities for the martingale square bracket”, Stochastics, 82:6 (2010), 589–605 | DOI | MR | Zbl

[49] A. Osȩkowski, Sharp martingale and semimartingale inequalities, IMPAN Monogr. Mat. (N. S.), 72, Birkhäuser/Springer Basel AG, Basel, 2012, xii+462 pp. | DOI | MR | Zbl

[50] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Grundlehren Math. Wiss., 293, Springer-Verlag, Berlin, 1991, ix+533 pp. | DOI | MR | Zbl

[51] W. Schachermayer, F. Stebegg, “The sharp constant for the Burkholder–Davis–Gundy inequality and non-smooth pasting”, Bernoulli, 24:4A (2018), 2499–2530 | DOI | MR | Zbl

[52] L. A. Shepp, “A first passage problem for the Wiener process”, Ann. Math. Statist., 38:6 (1967), 1912–1914 | DOI | MR | Zbl

[53] A. N. Shiryaev, “Andrei Nikolaevich Kolmogorov (April 25, 1903–October 20, 1987). In memoriam”, Theory Probab. Appl., 34:1 (1989), 1–99 | DOI | MR | Zbl

[54] A. N. Shiryaev, “O martingalnykh metodakh v zadachakh o peresechenii granits brounovskim dvizheniem”, Sovr. probl. matem., 8, MIAN, M., 2007, 3–78 | DOI | Zbl

[55] A. N. Shiryaev, Optimal stopping rules, Stoch. Model. Appl. Probab., 8, Reprint of the 3rd ed., Springer-Verlag, Berlin, 2008, xii+217 pp. | DOI | MR | MR | Zbl | Zbl

[56] A. N. Shiryaev, Probability-2, Grad. Texts in Math., 95, 3rd ed., Springer, New York, NY, 2019, x+348 pp. | DOI | MR | Zbl

[57] K. Uchiyama, “Brownian first exit from and sojourn over one sided moving boundary and application”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 54:1 (1980), 75–116 | DOI | MR | Zbl

[58] J. Ville, “Étude critique de la notion de collectif”, Monographies des probabilités, 3, Gauthier-Villars, Paris, 1939, 144 pp. | Zbl

[59] A. Wald, “Sequential tests of statistical hypotheses”, Ann. Math. Statist., 16:2 (1945), 117–186 | DOI | MR | Zbl