On a family of random operators
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 544-564 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Random operators arising in the construction of probabilistic representation of the resolvent of the operator $-\frac{1}{2}\,\frac{d}{dx}\bigl(b^2(x)\frac{d}{dx}\bigr)$ are considered and shown to be integral with probability $1$. Properties of their kernels are investigated.
Keywords: random processes, local time, random operator.
@article{TVP_2023_68_3_a6,
     author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
     title = {On a family of random operators},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {544--564},
     year = {2023},
     volume = {68},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a6/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - N. V. Smorodina
AU  - M. M. Faddeev
TI  - On a family of random operators
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 544
EP  - 564
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a6/
LA  - ru
ID  - TVP_2023_68_3_a6
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A N. V. Smorodina
%A M. M. Faddeev
%T On a family of random operators
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 544-564
%V 68
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a6/
%G ru
%F TVP_2023_68_3_a6
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. On a family of random operators. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 544-564. http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a6/

[1] M. Sh. Birman, M. Z. Solomjak, Spectral theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), 5, D. Reidel Publ. Co., Dordrecht, 1987, xv+301 pp. | MR | Zbl

[2] I. M. Gel'fand, G. E. Shilov, Generalized functions, v. I, Properties and operations, Academic Press, New York–London, 1964, xviii+423 pp. | MR | MR | Zbl | Zbl

[3] I. I. Gikhman, A. V. Skorokhod, Introduction to the theory of random processes, W. B. Saunders Co., Philadelphia, PA–London–Toronto, ON, 1969, xiii+516 pp. | MR | MR | Zbl

[4] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “On a family of complex-valued stochastic processes”, Dokl. Math., 104:3 (2021), 347–350 | DOI | DOI | MR | Zbl

[5] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Rezolventnye stokhasticheskie protsessy”, Algebra i analiz, 35:1 (2023), 192–203

[6] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968, xviii+495 pp. | MR | MR | Zbl | Zbl

[7] M. A. Naimark, Linear differential operators, v. I, II, Frederick Ungar Publishing Co., New York, 1967, 1968, xiii+144 pp., xv+352 pp. | MR | MR | MR | Zbl | Zbl

[8] M. Reed, B. Simon, Methods of modern mathematical physics, v. III, Academic Press, Inc., New York–London, 1979, xv+463 pp. | MR | MR | Zbl | Zbl

[9] A. N. Kolmogorov, “On analytical methods in probability theory”, Selected works of A. N. Kolmogorov, v. II, Math. Appl. (Soviet Ser.), 26, Kluwer Acad. Publ., Dordrecht, 1992, 62–108 | DOI | MR | MR | Zbl | Zbl