On a family of random operators
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 544-564

Voir la notice de l'article provenant de la source Math-Net.Ru

Random operators arising in the construction of probabilistic representation of the resolvent of the operator $-\frac{1}{2}\,\frac{d}{dx}\bigl(b^2(x)\frac{d}{dx}\bigr)$ are considered and shown to be integral with probability $1$. Properties of their kernels are investigated.
Keywords: random processes, local time, random operator.
@article{TVP_2023_68_3_a6,
     author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
     title = {On a family of random operators},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {544--564},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a6/}
}
TY  - JOUR
AU  - I. A. Ibragimov
AU  - N. V. Smorodina
AU  - M. M. Faddeev
TI  - On a family of random operators
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 544
EP  - 564
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a6/
LA  - ru
ID  - TVP_2023_68_3_a6
ER  - 
%0 Journal Article
%A I. A. Ibragimov
%A N. V. Smorodina
%A M. M. Faddeev
%T On a family of random operators
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 544-564
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a6/
%G ru
%F TVP_2023_68_3_a6
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. On a family of random operators. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 544-564. http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a6/