On a family of random operators
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 544-564
Voir la notice de l'article provenant de la source Math-Net.Ru
Random operators arising in the construction of probabilistic representation
of the resolvent of the operator
$-\frac{1}{2}\,\frac{d}{dx}\bigl(b^2(x)\frac{d}{dx}\bigr)$ are considered and
shown to be integral with probability $1$. Properties of their kernels are
investigated.
Keywords:
random processes, local time, random operator.
@article{TVP_2023_68_3_a6,
author = {I. A. Ibragimov and N. V. Smorodina and M. M. Faddeev},
title = {On a family of random operators},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {544--564},
publisher = {mathdoc},
volume = {68},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a6/}
}
I. A. Ibragimov; N. V. Smorodina; M. M. Faddeev. On a family of random operators. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 544-564. http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a6/