@article{TVP_2023_68_3_a5,
author = {A. M. Vershik and M. A. Lifshits},
title = {On $\mathrm{mm}$-entropy of a {Banach} space with a {Gaussian} measure},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {532--543},
year = {2023},
volume = {68},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a5/}
}
A. M. Vershik; M. A. Lifshits. On $\mathrm{mm}$-entropy of a Banach space with a Gaussian measure. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 532-543. http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a5/
[1] V. I. Bogachev, Gaussian measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998, xii+433 pp. | DOI | MR | MR | Zbl | Zbl
[2] A. M. Vershik, “Random metric spaces and universality”, Russian Math. Surveys, 59:2 (2004), 259–295 | DOI | DOI | MR | Zbl
[3] A. M. Vershik, P. B. Zatitskiy, F. V. Petrov, “Virtual continuity of measurable functions and its applications”, Russian Math. Surveys, 69:6 (2014), 1031–1063 | DOI | DOI | MR | Zbl
[4] A. M. Vershik, G. A. Veprev, P. B. Zatitskii, “Dinamika metrik v prostranstvakh s meroi i masshtabirovannaya entropiya”, UMN, 78:3(471) (2023), 53–114 | DOI
[5] I. M. Gelfand, A. N. Kolmogorov, A. M. Yaglom, “Kolichestvo informatsii i entropiya dlya nepreryvnykh raspredelenii”, Trudy Tretego Vsesoyuznogo matematicheskogo s'ezda (Moskva, 1956), v. 3, Izd-vo AN SSSR, M., 1958, 300–320 ; А. Н. Колмогоров, Теория информации и теория алгоритмов, Наука, М., 1987, 59–85 ; I. M. Gelfand, A. N. Kolmogorov, A. M. Yaglom, “Amount of information and entropy for continuous distributions”, Selected works of A. N. Kolmogorov, т. III, Math. Appl. (Soviet Ser.), 27, Information theory and the theory of algorithms, Kluwer Acad. Publ, Dordrecht, 1993, 33–56 с. | Zbl | MR | Zbl | DOI | MR | Zbl
[6] A. N. Kolmogorov, “O nekotorykh asimptoticheskikh kharakteristikakh vpolne ogranichennykh metricheskikh prostranstv”, Dokl. AN SSSR, 108 (1956), 385–389 | MR | Zbl
[7] A. N. Kolmogorov, “Teoriya peredachi informatsii”, Sessiya Akademii nauk SSSR po nauchnym problemam avtomatizatsii proizvodstva (Moskva, 1956), Izd-vo AN SSSR, M., 1957, 66–99; Теория информации и теория алгоритмов, Наука, М., 1987, 29–58 ; A. N. Kolmogorov, “The theory of transmission of information”, Selected works of A. N. Kolmogorov, т. III, Math. Appl. (Soviet Ser.), 27, Kluwer Acad. Publ., Dordrecht, 1993, 6–32 | MR | Zbl | DOI | MR | Zbl
[8] A. N. Kolmogorov, Predislovie:: K. Shennon, Raboty po teorii informatsii i kibernetike, IL, M., 1963, 5–6 | Zbl
[9] A. N. Kolmogorov, V. M. Tikhomirov, “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, UMN, 14:2(86) (1959), 3–86 ; Теория информации и теория алгоритмов, Наука, М., 1987, 119–198 ; A. N. Kolmogorov, V. M. Tikhomirov, “$\varepsilon$-entropy and $\varepsilon$-capacity of sets in function spaces”, Amer. Math. Soc. Transl. Ser. 2, 17, Amer. Math. Soc., Providence, RI, 1961, 227–364 | MR | Zbl | MR | Zbl | MR | Zbl
[10] M. A. Lifshits, Gaussian random functions, Math. Appl., 322, Kluwer Acad. Publ., Dordrecht, 1995, xii+333 pp. | DOI | MR | Zbl | Zbl
[11] M. A. Lifshits, Lektsii po gaussovskim protsessam, Lan, SPb., 2016, 192 pp.
[12] M. S. Pinsker, L. B. Sofman, “$(\varepsilon,\delta)$-entropy of completely ergodic stochastic processes”, Problems Inform. Transmission, 22:4 (1986), 251–255 | MR | Zbl
[13] V. M. Tikhomirov, “$\varepsilon$-entropiya i $\varepsilon$-emkost”, Teoriya informatsii i teoriya algoritmov, Nauka, M., 1987, 262–269 | MR | Zbl
[14] V. M. Tikhomirov, “Kolmogorov's work on $\varepsilon$-entropy of functional classes and the superposition of functions”, Russian Math. Surveys, 18:5 (1963), 51–87 | DOI | MR | Zbl
[15] V. M. Tikhomirov, “Widths and entropy”, Russian Math. Surveys, 38:4 (1983), 101–111 | DOI | MR | Zbl
[16] P. Khalmosh, Teoriya mery, IL, M., 1953, 291 pp. ; Факториал Пресс, М., 2003, 253 с.; P. R. Halmos, Measure theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950, xi+304 с. | MR | MR | Zbl
[17] S. Dereich, High resolution coding of stochastic processes and small ball probabilities, Ph.D. thesis, Technische Univ. Berlin, Berlin, 2003, vi+149 pp. | DOI
[18] S. Dereich, “Small ball probabilities around random centers of Gaussian measures and applications to quantization”, J. Theoret. Probab., 16:2 (2003), 427–449 | DOI | MR | Zbl
[19] S. Dereich, F. Fehringer, A. Matoussi, M. Scheutzow, “On the link between small ball probabilities and the quantization problem for Gaussian measures on Banach spaces”, J. Theoret. Probab., 16:1 (2003), 249–265 | DOI | MR | Zbl
[20] S. Dereich, M. Lifshits, “Probabilities of randomly centered small balls and quantization in Banach spaces”, Ann. Probab., 33:4 (2005), 1397–1421 | DOI | MR | Zbl
[21] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progr. Math., 152, Transl. from French, Birkhäuser Boston, Inc., Boston, MA, 1999, xx+585 pp. | MR | Zbl
[22] J. Kuelbs, W. V. Li, “Metric entropy and the small ball problem for Gaussian measures”, J. Funct. Anal., 116:1 (1993), 133–157 | DOI | MR | Zbl
[23] W. V. Li, W. Linde, “Approximation, metric entropy and small ball estimates for Gaussian measures”, Ann. Probab., 27:3 (1999), 1556–1578 | DOI | MR | Zbl
[24] H. Luschgy, G. Pagès, “Sharp asymptotics of the functional quantization problem for Gaussian processes”, Ann. Probab., 32:2 (2004), 1574–1599 | DOI | MR | Zbl
[25] K. Shennon, “Matematicheskaya teoriya svyazi”, Raboty po teorii informatsii i kibernetike, IL, M., 1963, 243–332 ; C. E. Shannon, “A mathematical theory of communication”, Bell Syst. Tech. J., 27:3 (1948), 379–423 ; 4, 623–656 | Zbl | DOI | MR | Zbl | DOI
[26] A. M. Vershik, “Dynamics of metrics in measure spaces and their asymptotic invariants”, Markov Process. Related Fields, 16:1 (2010), 169–184 | MR | Zbl