On $\mathrm{mm}$-entropy of a Banach space with a Gaussian measure
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 532-543

Voir la notice de l'article provenant de la source Math-Net.Ru

For a broad class of Banach spaces with Gaussian measure, we show that their entropy in the sense of Shannon (the $\mathrm{mm}$-entropy) is closely related to the entropy of the corresponding ellipsoid of concentration and behaves, in a certain range, as the logarithm of the measure of small balls. Relations between the $\mathrm{mm}$-entropy and the entropy of compact sets are also discussed in light of the classical works of Kolmogorov and Shannon.
Keywords: Gaussian measure, $\mathrm{mm}$-entropy, entropy of compact sets.
@article{TVP_2023_68_3_a5,
     author = {A. M. Vershik and M. A. Lifshits},
     title = {On $\mathrm{mm}$-entropy of a {Banach} space with a {Gaussian} measure},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {532--543},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a5/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - M. A. Lifshits
TI  - On $\mathrm{mm}$-entropy of a Banach space with a Gaussian measure
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 532
EP  - 543
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a5/
LA  - ru
ID  - TVP_2023_68_3_a5
ER  - 
%0 Journal Article
%A A. M. Vershik
%A M. A. Lifshits
%T On $\mathrm{mm}$-entropy of a Banach space with a Gaussian measure
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 532-543
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a5/
%G ru
%F TVP_2023_68_3_a5
A. M. Vershik; M. A. Lifshits. On $\mathrm{mm}$-entropy of a Banach space with a Gaussian measure. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 532-543. http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a5/