On $\mathrm{mm}$-entropy of a Banach space with a Gaussian measure
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 532-543
Voir la notice de l'article provenant de la source Math-Net.Ru
For a broad class of Banach spaces with Gaussian measure, we show that their
entropy in the sense of Shannon (the $\mathrm{mm}$-entropy) is closely
related to the entropy of the corresponding ellipsoid of concentration and
behaves, in a certain range, as the logarithm of the measure of small balls.
Relations between the $\mathrm{mm}$-entropy and the entropy of compact sets
are also discussed in light of the classical works of Kolmogorov and
Shannon.
Keywords:
Gaussian measure, $\mathrm{mm}$-entropy, entropy of compact sets.
@article{TVP_2023_68_3_a5,
author = {A. M. Vershik and M. A. Lifshits},
title = {On $\mathrm{mm}$-entropy of a {Banach} space with a {Gaussian} measure},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {532--543},
publisher = {mathdoc},
volume = {68},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a5/}
}
TY - JOUR
AU - A. M. Vershik
AU - M. A. Lifshits
TI - On $\mathrm{mm}$-entropy of a Banach space with a Gaussian measure
JO - Teoriâ veroâtnostej i ee primeneniâ
PY - 2023
SP - 532
EP - 543
VL - 68
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a5/
LA - ru
ID - TVP_2023_68_3_a5
ER -
A. M. Vershik; M. A. Lifshits. On $\mathrm{mm}$-entropy of a Banach space with a Gaussian measure. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 532-543. http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a5/