@article{TVP_2023_68_3_a4,
author = {V. A. Vatutin and E. E. Dyakonova},
title = {Population size of a critical branching process evolving in unfovarable environment},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {509--531},
year = {2023},
volume = {68},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a4/}
}
TY - JOUR AU - V. A. Vatutin AU - E. E. Dyakonova TI - Population size of a critical branching process evolving in unfovarable environment JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2023 SP - 509 EP - 531 VL - 68 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a4/ LA - ru ID - TVP_2023_68_3_a4 ER -
V. A. Vatutin; E. E. Dyakonova. Population size of a critical branching process evolving in unfovarable environment. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 509-531. http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a4/
[1] V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl
[2] V. I. Afanasyev, C. Böinghoff, G. Kersting, V. A. Vatutin, “Limit theorems for weakly subcritical branching processes in random environment”, J. Theoret. Probab., 25:3 (2012), 703–732 | DOI | MR | Zbl
[3] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, xx+491 pp. | DOI | MR | Zbl
[4] F. Caravenna, L. Chaumont, “Invariance principles for random walks conditioned to stay positive”, Ann. Inst. Henri Poincaré Probab. Stat., 44:1 (2008), 170–190 | DOI | MR | Zbl
[5] F. Caravenna, L. Chaumont, “An invariance principles for random walk bridges conditioned to stay positive”, Electron. J. Probab., 18 (2013), 60, 32 pp. | DOI | MR | Zbl
[6] L. Chaumont, R. A. Doney, “Invariance principles for local times at the maximum of random walks and Lévy processes”, Ann. Probab., 38:4 (2010), 1368–1389 | DOI | MR | Zbl
[7] R. A. Doney, “Spitzer's condition and the ladder variables in random walks”, Probab. Theory Related Fields, 101:4 (1995), 577–580 | DOI | MR | Zbl
[8] R. A. Doney, “Local behaviour of first passage probabilities”, Probab. Theory Related Fields, 152:3-4 (2012), 559–588 | DOI | MR | Zbl
[9] G. Kersting, V. Vatutin, Discrete time branching processes in random environment, Math. Stat. Ser., John Wiley Sons, Inc., Hoboken, NJ; ISTE, London, 2017, xiv+286 pp. | DOI | Zbl
[10] A. N. Kolmogorov, “K resheniyu odnoi biologicheskoi zadachi”, Izv. NII matem. i mekh. Tomsk. un-ta, 2:1 (1938), 7–12 | Zbl
[11] M. V. Kozlov, “On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment”, Theory Probab. Appl., 21:4 (1977), 791–804 | DOI | MR | Zbl
[12] B. A. Rogozin, “The distrbution of the first ladder moment and height and fluctuation of a random walk”, Theory Probab. Appl., 16:4 (1971), 575–595 | DOI | MR | Zbl
[13] V. A. Vatutin, V. Wachtel, “Local probabilities for random walks conditioned to stay positive”, Probab. Theory Related Fields, 143:1-2 (2009), 177–217 | DOI | MR | Zbl
[14] V. A. Vatutin, E. E. Dyakonova, Critical branching processes evolving in an unfavorable random environment, 2022, 15 pp., arXiv: 2209.13611v1 | DOI
[15] V. M. Zolotarev, “Mellin–Stieltjes transforms in probability theory”, Theory Probab. Appl., 2:4 (1957), 433–460 | DOI | MR | Zbl
[16] W. Feller, An introduction to probability theory and its applications, v. II, 2nd ed., John Wiley Sons, Inc., New York–London–Sydney, 1971, xxiv+669 pp. | MR | MR | Zbl | Zbl