Population size of a critical branching process evolving in unfovarable environment
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 509-531

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{Z_n,\, n=0,1,\dots\}$ be a critical branching process in a random environment and let $\{S_n,\, n=0,1,\dots\}$ be its associated random walk. It is known that if the distribution of increments of this random walk belongs (without centering) to the domain of attraction of a stable distribution, then there is a sequence $a_1,a_2,\dots$ regularly varying at infinity such that, for any ${t\in (0,1]}$ and ${x\in(0,+\infty)}$, $\lim_{n\to \infty}\mathbf{P}({\ln Z_{nt}}/{a_n}\leq x\mid Z_n>0) = \lim_{n\to \infty}\mathbf{P}({S_{nt}}/{a_n}\leq x\mid {Z_n>0})=\mathbf{P}({Y_t^+\leq x})$, where $Y_{t}^{+}$ is the value at point $t$ of the meander of unit length of a strictly stable process. We complement this result with a description of conditional distributions of appropriately normalized random variables (r.v.'s) $\ln Z_{nt}$ and $S_{nt}$, given $\{S_n\leq\varphi(n);\ Z_n>0\}$, where $\varphi (n)\to \infty $ as $n\to \infty $ in such a way that $\varphi (n)=o(a_n)$.
Keywords: branching process, unfavorable random environment, survival probability.
@article{TVP_2023_68_3_a4,
     author = {V. A. Vatutin and E. E. Dyakonova},
     title = {Population size of a critical branching process evolving in unfovarable environment},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {509--531},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a4/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - E. E. Dyakonova
TI  - Population size of a critical branching process evolving in unfovarable environment
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 509
EP  - 531
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a4/
LA  - ru
ID  - TVP_2023_68_3_a4
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A E. E. Dyakonova
%T Population size of a critical branching process evolving in unfovarable environment
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 509-531
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a4/
%G ru
%F TVP_2023_68_3_a4
V. A. Vatutin; E. E. Dyakonova. Population size of a critical branching process evolving in unfovarable environment. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 509-531. http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a4/