Population size of a critical branching process evolving in unfovarable environment
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 509-531
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\{Z_n,\, n=0,1,\dots\}$ be a critical branching process
in a random environment and let $\{S_n,\, n=0,1,\dots\}$ be its
associated random walk. It is known that if the distribution of increments
of this random walk belongs (without centering) to the domain of attraction
of a stable distribution, then there is a sequence $a_1,a_2,\dots$
regularly varying at infinity such that, for any ${t\in (0,1]}$ and ${x\in(0,+\infty)}$, $\lim_{n\to \infty}\mathbf{P}({\ln Z_{nt}}/{a_n}\leq x\mid Z_n>0) = \lim_{n\to \infty}\mathbf{P}({S_{nt}}/{a_n}\leq x\mid {Z_n>0})=\mathbf{P}({Y_t^+\leq x})$,
where $Y_{t}^{+}$ is the value at point $t$ of the meander of unit length of
a strictly stable process. We complement this result with a description of
conditional distributions of appropriately normalized random variables
(r.v.'s) $\ln Z_{nt}$ and $S_{nt}$, given $\{S_n\leq\varphi(n);\ Z_n>0\}$,
where $\varphi (n)\to \infty $ as $n\to \infty $ in such a way that $\varphi
(n)=o(a_n)$.
Keywords:
branching process, unfavorable random environment, survival probability.
@article{TVP_2023_68_3_a4,
author = {V. A. Vatutin and E. E. Dyakonova},
title = {Population size of a critical branching process evolving in unfovarable environment},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {509--531},
publisher = {mathdoc},
volume = {68},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a4/}
}
TY - JOUR AU - V. A. Vatutin AU - E. E. Dyakonova TI - Population size of a critical branching process evolving in unfovarable environment JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2023 SP - 509 EP - 531 VL - 68 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a4/ LA - ru ID - TVP_2023_68_3_a4 ER -
%0 Journal Article %A V. A. Vatutin %A E. E. Dyakonova %T Population size of a critical branching process evolving in unfovarable environment %J Teoriâ veroâtnostej i ee primeneniâ %D 2023 %P 509-531 %V 68 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a4/ %G ru %F TVP_2023_68_3_a4
V. A. Vatutin; E. E. Dyakonova. Population size of a critical branching process evolving in unfovarable environment. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 509-531. http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a4/