Population size of a critical branching process evolving in unfovarable environment
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 509-531 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\{Z_n,\, n=0,1,\dots\}$ be a critical branching process in a random environment and let $\{S_n,\, n=0,1,\dots\}$ be its associated random walk. It is known that if the distribution of increments of this random walk belongs (without centering) to the domain of attraction of a stable distribution, then there is a sequence $a_1,a_2,\dots$ regularly varying at infinity such that, for any ${t\in (0,1]}$ and ${x\in(0,+\infty)}$, $\lim_{n\to \infty}\mathbf{P}({\ln Z_{nt}}/{a_n}\leq x\mid Z_n>0) = \lim_{n\to \infty}\mathbf{P}({S_{nt}}/{a_n}\leq x\mid {Z_n>0})=\mathbf{P}({Y_t^+\leq x})$, where $Y_{t}^{+}$ is the value at point $t$ of the meander of unit length of a strictly stable process. We complement this result with a description of conditional distributions of appropriately normalized random variables (r.v.'s) $\ln Z_{nt}$ and $S_{nt}$, given $\{S_n\leq\varphi(n);\ Z_n>0\}$, where $\varphi (n)\to \infty $ as $n\to \infty $ in such a way that $\varphi (n)=o(a_n)$.
Keywords: branching process, unfavorable random environment, survival probability.
@article{TVP_2023_68_3_a4,
     author = {V. A. Vatutin and E. E. Dyakonova},
     title = {Population size of a critical branching process evolving in unfovarable environment},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {509--531},
     year = {2023},
     volume = {68},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a4/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - E. E. Dyakonova
TI  - Population size of a critical branching process evolving in unfovarable environment
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 509
EP  - 531
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a4/
LA  - ru
ID  - TVP_2023_68_3_a4
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A E. E. Dyakonova
%T Population size of a critical branching process evolving in unfovarable environment
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 509-531
%V 68
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a4/
%G ru
%F TVP_2023_68_3_a4
V. A. Vatutin; E. E. Dyakonova. Population size of a critical branching process evolving in unfovarable environment. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 509-531. http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a4/

[1] V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[2] V. I. Afanasyev, C. Böinghoff, G. Kersting, V. A. Vatutin, “Limit theorems for weakly subcritical branching processes in random environment”, J. Theoret. Probab., 25:3 (2012), 703–732 | DOI | MR | Zbl

[3] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1987, xx+491 pp. | DOI | MR | Zbl

[4] F. Caravenna, L. Chaumont, “Invariance principles for random walks conditioned to stay positive”, Ann. Inst. Henri Poincaré Probab. Stat., 44:1 (2008), 170–190 | DOI | MR | Zbl

[5] F. Caravenna, L. Chaumont, “An invariance principles for random walk bridges conditioned to stay positive”, Electron. J. Probab., 18 (2013), 60, 32 pp. | DOI | MR | Zbl

[6] L. Chaumont, R. A. Doney, “Invariance principles for local times at the maximum of random walks and Lévy processes”, Ann. Probab., 38:4 (2010), 1368–1389 | DOI | MR | Zbl

[7] R. A. Doney, “Spitzer's condition and the ladder variables in random walks”, Probab. Theory Related Fields, 101:4 (1995), 577–580 | DOI | MR | Zbl

[8] R. A. Doney, “Local behaviour of first passage probabilities”, Probab. Theory Related Fields, 152:3-4 (2012), 559–588 | DOI | MR | Zbl

[9] G. Kersting, V. Vatutin, Discrete time branching processes in random environment, Math. Stat. Ser., John Wiley Sons, Inc., Hoboken, NJ; ISTE, London, 2017, xiv+286 pp. | DOI | Zbl

[10] A. N. Kolmogorov, “K resheniyu odnoi biologicheskoi zadachi”, Izv. NII matem. i mekh. Tomsk. un-ta, 2:1 (1938), 7–12 | Zbl

[11] M. V. Kozlov, “On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment”, Theory Probab. Appl., 21:4 (1977), 791–804 | DOI | MR | Zbl

[12] B. A. Rogozin, “The distrbution of the first ladder moment and height and fluctuation of a random walk”, Theory Probab. Appl., 16:4 (1971), 575–595 | DOI | MR | Zbl

[13] V. A. Vatutin, V. Wachtel, “Local probabilities for random walks conditioned to stay positive”, Probab. Theory Related Fields, 143:1-2 (2009), 177–217 | DOI | MR | Zbl

[14] V. A. Vatutin, E. E. Dyakonova, Critical branching processes evolving in an unfavorable random environment, 2022, 15 pp., arXiv: 2209.13611v1 | DOI

[15] V. M. Zolotarev, “Mellin–Stieltjes transforms in probability theory”, Theory Probab. Appl., 2:4 (1957), 433–460 | DOI | MR | Zbl

[16] W. Feller, An introduction to probability theory and its applications, v. II, 2nd ed., John Wiley Sons, Inc., New York–London–Sydney, 1971, xxiv+669 pp. | MR | MR | Zbl | Zbl