On an asymptotic approach to the change point detection problem and exponential
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 456-482
Voir la notice de l'article provenant de la source Math-Net.Ru
Under the assumption that the change-point time is large, a Poisson
approximation for the distribution of the number of false alarms is obtained.
We also find upper bounds for the probability of a “false alarm” on a given
time interval. An asymptotic expansion for the mean delay time of the alarm
signal relative to the change-point time is obtained. To get this result, we establish the exponential convergence rate in the ergodic theorem for Markov
chains with a positive atom; chains of this kind describe the monitoring of
control systems. A game-theoretic approach is employed to obtain
asymptotically optimal solutions of the change-point problem.
Keywords:
change-point problem, change-point detection, delay time, number of “false
alarms,” Poisson approximation, Markov chain with a positive atom,
exponential convergence rate, asymptotically optimal solution.
@article{TVP_2023_68_3_a2,
author = {A. A. Borovkov},
title = {On an asymptotic approach to the change point detection problem and exponential},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {456--482},
publisher = {mathdoc},
volume = {68},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a2/}
}
TY - JOUR AU - A. A. Borovkov TI - On an asymptotic approach to the change point detection problem and exponential JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2023 SP - 456 EP - 482 VL - 68 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a2/ LA - ru ID - TVP_2023_68_3_a2 ER -
A. A. Borovkov. On an asymptotic approach to the change point detection problem and exponential. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 456-482. http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a2/