On an asymptotic approach to the change point detection problem and exponential
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 456-482 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Under the assumption that the change-point time is large, a Poisson approximation for the distribution of the number of false alarms is obtained. We also find upper bounds for the probability of a “false alarm” on a given time interval. An asymptotic expansion for the mean delay time of the alarm signal relative to the change-point time is obtained. To get this result, we establish the exponential convergence rate in the ergodic theorem for Markov chains with a positive atom; chains of this kind describe the monitoring of control systems. A game-theoretic approach is employed to obtain asymptotically optimal solutions of the change-point problem.
Keywords: change-point problem, change-point detection, delay time, number of “false alarms,” Poisson approximation, Markov chain with a positive atom, exponential convergence rate, asymptotically optimal solution.
@article{TVP_2023_68_3_a2,
     author = {A. A. Borovkov},
     title = {On an asymptotic approach to the change point detection problem and exponential},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {456--482},
     year = {2023},
     volume = {68},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a2/}
}
TY  - JOUR
AU  - A. A. Borovkov
TI  - On an asymptotic approach to the change point detection problem and exponential
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 456
EP  - 482
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a2/
LA  - ru
ID  - TVP_2023_68_3_a2
ER  - 
%0 Journal Article
%A A. A. Borovkov
%T On an asymptotic approach to the change point detection problem and exponential
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 456-482
%V 68
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a2/
%G ru
%F TVP_2023_68_3_a2
A. A. Borovkov. On an asymptotic approach to the change point detection problem and exponential. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 456-482. http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a2/

[1] A. A. Borovkov, Mathematical statistics, Gordon Breach Sci. Publ., Amsterdam, 1998, xxii+570 pp. | MR | Zbl

[2] A. A. Borovkov, Stochastic processes in queueing theory, Appl. Math., 4, Springer-Verlag, New York–Berlin, 1976, xi+280 pp. | DOI | MR | MR | Zbl | Zbl

[3] A. A. Borovkov, Probability theory, Universitext, Springer, London, 2013, xxviii+733 pp. | DOI | MR | Zbl

[4] E. S. Page, “Continuous inspection schemes”, Biometrica, 41:1 (1954), 100–115 | DOI | MR | Zbl

[5] G. Lorden, “Procedures for reacting to a change in distribution”, Ann. Math. Statist., 42:6 (1971), 1897–1908 | DOI | MR | Zbl

[6] G. V. Moustakides, “Optimal stopping times for detecting changes in distributions”, Ann. Statist., 14:4 (1986), 1379–1387 | DOI | MR | Zbl

[7] M. Baron, A. G. Tartakovsky, “Asymptotic optimality of change-point detection schemes in general continuous-time models”, Sequential Anal., 25:3 (2006), 257–296 | DOI | MR | Zbl

[8] D. Siegmund, “Change-points: from sequential detection to biology and back”, Sequential Anal., 32:1 (2013), 2–14 | DOI | MR | Zbl

[9] A. N. Shiryaev, “On optimum methods in quickest detection problems”, Theory Probab. Appl., 8:1 (1963), 22–46 | DOI | MR | Zbl

[10] Ch. Stone, “On moment generating functions and renewal theory”, Ann. Math. Statist., 36:4 (1965), 1298–1301 | DOI | MR | Zbl

[11] M. Benaïm, T. Hurth, Markov chains on metric spaces. A short course, Textbook, Universitext, Springer, Cham, 2022, xv+197 pp. | DOI | MR | Zbl

[12] A. A. Borovkov, Asymptotic analysis of random walks. Light-tailed distributions, Encyclopedia Math. Appl., 176, Cambridge Univ. Press, Cambridge, 2020, xvi+420 pp. | DOI | MR | Zbl | Zbl

[13] G. Lorden, “On the excess over the boundary”, Ann. Math. Statist., 41:2 (1970), 520–527 | DOI | MR | Zbl

[14] D. L. Iglehart, “Extreme values in the GI/G/1 queue”, Ann. Math. Statist., 43:2 (1972), 627–635 | DOI | MR | Zbl

[15] A. A. Borovkov, Obobschennye protsessy vosstanovleniya, RAN, M., 2020, 455 pp.

[16] B. Gnedenko, “Sur la distribution limite du terme maximum d'une série aléatoire”, Ann. of Math. (2), 44:3 (1943), 423–453 | DOI | MR