On nondegenerate Itô processes with moderated drift
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 630-660 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present an approach to proving parabolic Aleksandrov estimates with mixed norms for stochastic integrals with singular “moderated” drift.
Mots-clés : diffusion process, Itô process
Keywords: singular drift.
@article{TVP_2023_68_3_a11,
     author = {N. V. Krylov},
     title = {On nondegenerate {It\^o} processes with moderated drift},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {630--660},
     year = {2023},
     volume = {68},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a11/}
}
TY  - JOUR
AU  - N. V. Krylov
TI  - On nondegenerate Itô processes with moderated drift
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 630
EP  - 660
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a11/
LA  - ru
ID  - TVP_2023_68_3_a11
ER  - 
%0 Journal Article
%A N. V. Krylov
%T On nondegenerate Itô processes with moderated drift
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 630-660
%V 68
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a11/
%G ru
%F TVP_2023_68_3_a11
N. V. Krylov. On nondegenerate Itô processes with moderated drift. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 630-660. http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a11/

[1] X. Cabré, “On the Alexandroff–Bakelman–Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations”, Comm. Pure Appl. Math., 48:5 (1995), 539–570 | DOI | MR | Zbl

[2] M. G. Crandall, M. Kocan, A. Świȩch, “$L^p$-theory for fully nonlinear uniformly parabolic equations”, Comm. Partial Differential Equations, 25:11-12 (2000), 1997–2053 | DOI | MR | Zbl

[3] Hongjie Dong, N. V. Krylov, “Aleksandrov's estimates for elliptic equations with drift in Morrey spaces containing $L_{d}$”, Proc. Amer. Math. Soc., 150:4 (2022), 1641–1645 | DOI | MR | Zbl

[4] E. B. Fabes, D. W. Stroock, “The $L^{p}$-integrability of Green's functions and fundamental solutions for elliptic and parabolic equations”, Duke Math. J., 51:4 (1984), 997–1016 | DOI | MR | Zbl

[5] K. Fok, “A nonlinear Fabes–Stroock result”, Comm. Partial Differential Equations, 23:5-6 (1998), 967–983 | DOI | MR | Zbl

[6] M. Giaquinta, M. Struwe, “On the partial regularity of weak solutions of nonlinear parabolic systems”, Math. Z., 179:4 (1982), 437–451 | DOI | MR | Zbl

[7] N. V. Krylov, “Some estimates of the probability density of a stochastic integral”, Math. USSR-Izv., 8:1 (1974), 233–254 | DOI | MR | Zbl

[8] N. V. Krylov, Controlled diffusion processes, Appl. Math. (N. Y.), 14, Springer-Verlag, New York–Berlin, 1980, xii+308 pp. | DOI | MR | MR | Zbl | Zbl

[9] N. V. Krylov, “On estimates of the maximum of a solution of a parabolic equation and estimates of the distribution of a semimartingale”, Math. USSR-Sb., 58:1 (1987), 207–221 | DOI | MR | Zbl

[10] N. V. Krylov, “On time inhomogeneous stochastic Itô equations with drift in $L_{d+1}$”, Ukr. matem. zhurn., 72:9 (2020), 1232–1253 ; Ukrainian Math. J., 72:9 (2021), 1420–1444 | DOI | MR | Zbl | DOI

[11] N. V. Krylov, “On stochastic equations with drift in $L_d$”, Ann. Probab., 49:5 (2021), 2371–2398 | DOI | MR | Zbl

[12] N. V. Krylov, “On diffusion processes with drift in a Morrey class containing $L_{d+2}$”, J. Dynam. Differential Equations, 2021, 1–19, Publ. online | DOI

[13] N. V. Krylov, “Some properties of solutions of Itô equations with drift in $L_{d+1}$”, Stochastic Process. Appl., 147 (2022), 363–387 | DOI | MR | Zbl

[14] A. I. Nazarov, On the maximum principle for parabolic equations with unbounded coefficients, 2015, 14 pp., arXiv: 1507.05232 | MR

[15] A. I. Nazarov, N. N. Ural'tseva, “Convex-monotone hulls and an estimate of the maximum of the solution of a parabolic equation”, J. Soviet Math., 37 (1987), 851–859 | DOI | MR | Zbl