Keywords: transition probability, invariant measure, Cauchy problem.
@article{TVP_2023_68_3_a1,
author = {V. I. Bogachev and M. R\"ockner and S. V. Shaposhnikov},
title = {Kolmogorov problems on equations for stationary and transition probabilities of diffusion processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {420--455},
year = {2023},
volume = {68},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a1/}
}
TY - JOUR AU - V. I. Bogachev AU - M. Röckner AU - S. V. Shaposhnikov TI - Kolmogorov problems on equations for stationary and transition probabilities of diffusion processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2023 SP - 420 EP - 455 VL - 68 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a1/ LA - ru ID - TVP_2023_68_3_a1 ER -
%0 Journal Article %A V. I. Bogachev %A M. Röckner %A S. V. Shaposhnikov %T Kolmogorov problems on equations for stationary and transition probabilities of diffusion processes %J Teoriâ veroâtnostej i ee primeneniâ %D 2023 %P 420-455 %V 68 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a1/ %G ru %F TVP_2023_68_3_a1
V. I. Bogachev; M. Röckner; S. V. Shaposhnikov. Kolmogorov problems on equations for stationary and transition probabilities of diffusion processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 420-455. http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a1/
[1] S. Albeverio, V. Bogachev, M. Röckner, “On uniqueness of invariant measures for finite- and infinite-dimensional diffusions”, Comm. Pure Appl. Math., 52:3 (1999), 325–362 | 3.0.CO;2-V class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[2] L. Ambrosio, “Transport equation and Cauchy problem for non-smooth vector fields”, Calculus of variations and nonlinear partial differential equations, Lecture Notes in Math., 1927, Springer, Berlin, 2008, 1–41 | DOI | MR | Zbl
[3] D. G. Aronson, P. Besala, “Uniqueness of solutions of the Cauchy problem for parabolic equations”, J. Math. Anal. Appl., 13:3 (1966), 516–526 | DOI | MR | Zbl
[4] P. Bauman, “Equivalence of the Green's functions for diffusion operators in $\mathbf{R}^n$: a counterexample”, Proc. Amer. Math. Soc., 91:1 (1984), 64–68 | DOI | MR | Zbl
[5] V. I. Bogachev, “Ornstein–Uhlenbeck operators and semigroups”, Russian Math. Surveys, 73:2 (2018), 191–260 | DOI | DOI | MR | Zbl
[6] V. I. Bogachev, “Stationary Fokker–Planck–Kolmogorov equations”, Stochastic partial differential equations and related fields, Springer Proc. Math. Stat., 229, Springer, Cham, 2018, 3–24 | DOI | MR | Zbl
[7] V. I. Bogachev, “Kantorovich problem of optimal transportation of measures: new directions of research”, Russian Math. Surveys, 77:5 (2022), 769–817 | DOI | DOI | MR
[8] V. I. Bogachev, A. I. Kirillov, S. V. Shaposhnikov, “Distances between stationary distributions of diffusions and solvability of nonlinear Fokker–Planck–Kolmogorov equations”, Theory Probab. Appl., 62:1 (2018), 12–34 | DOI | DOI | MR | Zbl
[9] V. I. Bogachev, E. D. Kosov, A. V. Shaposhnikov, “Regularity of solutions to Kolmogorov equations with perturbed drifts”, Potential Anal., 58:4 (2023), 681–702 | DOI | MR | Zbl
[10] V. I. Bogachev, T. I. Krasovitskii, S. V. Shaposhnikov, “On non-uniqueness of probability solutions to the two-dimensional stationary Fokker–Planck–Kolmogorov equation”, Dokl. Math., 98:2 (2018), 475–479 | DOI | DOI | MR | Zbl
[11] V. I. Bogachev, T. I. Krasovitskii, S. V. Shaposhnikov, “On uniqueness of probability solutions of the Fokker–Planck–Kolmogorov equation”, Sb. Math., 212:6 (2021), 745–781 | DOI | DOI | MR | Zbl
[12] V. I. Bogachev, N. V. Krylov, M. Röckner, “On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions”, Comm. Partial Differential Equations, 26:11-12 (2001), 2037–2080 | DOI | MR | Zbl
[13] V. I. Bogachev, N. V. Krylov, M. Röckner, “Elliptic equations for measures: regularity and global bounds of densities”, J. Math. Pures Appl. (9), 85:6 (2006), 743–757 | DOI | MR | Zbl
[14] V. I. Bogachev, N. V. Krylov, M. Röckner, “Elliptic and parabolic equations for measures”, Russian Math. Surveys, 64:6 (2009), 973–1078 | DOI | DOI | MR | Zbl
[15] V. I. Bogachev, N. V. Krylov, M. Röckner, S. V. Shaposhnikov, Fokker–Planck–Kolmogorov equations, Math. Surveys Monogr., 207, Amer. Math. Soc., Providence, RI, 2015, xii+479 pp. | DOI | MR | Zbl
[16] V. I. Bogachev, S. N. Popova, S. V. Shaposhnikov, “On Sobolev regularity of solutions to Fokker–Planck–Kolmogorov equations with drifts in $L^1$”, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 30:1 (2019), 205–221 | DOI | MR | Zbl
[17] V. I. Bogachev, M. Röckner, “Regularity of invariant measures on finite and infinite dimensional spaces and applications”, J. Funct. Anal., 133:1 (1995), 168–223 ; “Письмо в редакцию”, 46:3 (2001), 600 | DOI | MR | Zbl | DOI | MR
[18] V. I. Bogachev, M. Röckner, “A generalization of Khasminskii's theorem on the existence of invariant measures for locally integrable drifts”, Theory Probab. Appl., 45:3 (2001), 363–378 | DOI | DOI | DOI | MR | MR | Zbl
[19] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Distances between transition probabilities of diffusions and applications to nonlinear Fokker–Planck–Kolmogorov equations”, J. Funct. Anal., 271:5 (2016), 1262–1300 | DOI | MR | Zbl
[20] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “The Poisson equation and estimates for distances between stationary distributions of diffusions”, J. Math. Sci. (N.Y.), 232:3 (2018), 254–282 | DOI | MR | Zbl
[21] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Convergence in variation of solutions of nonlinear Fokker–Planck–Kolmogorov equations to stationary measures”, J. Funct. Anal., 276:12 (2019), 3681–3713 | DOI | MR | Zbl
[22] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “On convergence to stationary distributions for solutions of nonlinear Fokker–Planck–Kolmogorov equations”, J. Math. Sci. (N.Y.), 242:1 (2019), 69–84 | DOI | MR | Zbl
[23] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “On the Ambrosio–Figalli–Trevisan superposition principle for probability solutions to Fokker–Planck–Kolmogorov equations”, J. Dynam. Differential Equations, 33:2 (2021), 715–739 | DOI | MR | Zbl
[24] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Applications of Zvonkin's transform to stationary Kolmogorov equations”, Dokl. Math., 106:2 (2022), 318–321 | DOI | DOI | MR | Zbl
[25] V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Zvonkin's transform and the regularity of solutions to double divergence form elliptic equations”, Comm. Partial Differential Equations, 48:1 (2023), 119–149 | DOI | MR | Zbl
[26] V. I. Bogachev, M. Röckner, W. Stannat, “Uniqueness of solutions of elliptic equations and uniqueness of invariant measures of diffusions”, Sb. Math., 193:7 (2002), 945–976 | DOI | DOI | MR | Zbl
[27] V. I. Bogachev, M. Röckner, Feng-Yu Wang, “Elliptic equations for invariant measures on finite and infinite dimensional manifolds”, J. Math. Pures Appl. (9), 80:2 (2001), 177–221 | DOI | MR | Zbl
[28] V. I. Bogachev, A. V. Shaposhnikov, S. V. Shaposhnikov, “Log-Sobolev-type inequalities for solutions to stationary Fokker–Planck–Kolmogorov equations”, Calc. Var. Partial Differential Equations, 58:5 (2019), 176, 16 pp. | DOI | MR | Zbl
[29] V. I. Bogachev, S. V. Shaposhnikov, “Integrability and continuity of solutions to double divergence form equations”, Ann. Mat. Pura Appl. (4), 196:5 (2017), 1609–1635 | DOI | MR | Zbl
[30] V. I. Bogachev, S. V. Shaposhnikov, “Representations of solutions to Fokker–Planck–Kolmogorov equations with coefficients of low regularity”, J. Evol. Equ., 20:2 (2020), 355–374 | DOI | MR | Zbl
[31] V. I. Bogachev, S. V. Shaposhnikov, “Uniqueness of a probability solution to the Kolmogorov equation with a diffusion matrix satisfying Dini's condition”, Dokl. Math., 104:3 (2021), 322–325 | DOI | DOI | MR | Zbl
[32] S. Chapman, “On the Brownian displacements and thermal diffusion of grains suspended in a non-uniform fluid”, Proc. R. Soc. Lond. Ser. A, 119:781 (1928), 34–54 | DOI | Zbl
[33] Hongjie Dong, L. Escauriaza, Seick Kim, “On $C^1$, $C^2$, and weak type-$(1,1)$ estimates for linear elliptic operators: part II”, Math. Ann., 370:1-2 (2018), 447–489 | DOI | MR | Zbl
[34] Hongjie Dong, Seick Kim, “On $C^1$, $C^2$, and weak type-$(1,1)$ estimates for linear elliptic operators”, Comm. Partial Differential Equations, 42:3 (2017), 417–435 | DOI | MR | Zbl
[35] W. Feller, “Zur Theorie der stochastischen Prozesse. Existenz- und Eindeutigkeitssätze”, Math. Ann., 113:1 (1937), 113–160 | DOI | MR | Zbl
[36] W. Feller, “The parabolic differential equations and the associated semi-groups of transformations”, Ann. of Math. (2), 55:3 (1952), 468–519 | DOI | MR | Zbl
[37] W. Feller, “Generalized second order differential operators and their lateral conditions”, Illinois J. Math., 1:4 (1957), 459–504 | DOI | MR | Zbl
[38] A. Figalli, “Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients”, J. Funct. Anal., 254:1 (2008), 109–153 | DOI | MR | Zbl
[39] A. D. Fokker, “Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld”, Ann. Phys., 348:5 (1914), 810–820 | DOI
[40] A. Friedman, “On the uniqueness of the Cauchy problem for parabolic equations”, Amer. J. Math., 81:2 (1959), 503–511 | DOI | MR | Zbl
[41] E. Hille, “The abstract Cauchy problem and Cauchy's problem for parabolic differential equations”, J. Analyse Math., 3 (1954), 81–196 | DOI | MR | Zbl
[42] A. M. Il'in, R. Z. Has'minskii, “Asymptotic behavior of solutions of parabolic equations and an ergodic property of nonhomogeneous diffusion processes”, Ten papers on functional analysis and measure theory, Amer. Math. Soc. Transl. Ser. 2, 49, Amer. Math. Soc., Providence, RI, 1966, 241–268 | DOI | MR | Zbl
[43] R. Z. Khas'minskii, “Ergodic properties of reccurent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations”, Theory Probab. Appl., 5:2 (1960), 179–196 | DOI | MR | Zbl
[44] R. Z. Khasminskii, Stochastic stability of differential equations, Stoch. Model. Appl. Probab., 66, 2nd ed., Springer, Heidelberg, 2012, xviii+339 pp. | DOI | MR | MR | Zbl | Zbl
[45] A. N. Kolmogorov, “Ob analiticheskikh metodakh v teorii veroyatnostei”, UMN, 1938, no. 5, 5–41 ; Избранные труды, т. 2, Наука, М., 2005, 67–111 ; A. Kolmogoroff, “Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung”, Math. Ann., 104:1 (1931), 415–458 ; A. N. Kolmogorov, “On analytical methods in probability theory”, Selected works of A. N. Kolmogorov, т. II, Math. Appl. (Soviet Ser.), 26, Kluwer Acad. Publ., Dordrecht, 1992, 62–108 | MR | Zbl | DOI | MR | Zbl | MR | Zbl
[46] A. N. Kolmogorov, “O predelnykh teoremakh teorii veroyatnostei”, Izbrannye trudy, v. 2, Nauka, M., 2005, 149–156 ; A. Kolmogorov (A. Kolmogoroff), “Über die Grenzwertsätze der Wahrscheinlichkeitsrechnung”, Izv. AN SSSR. VII ser., 3 (1933), 363–372 ; A. N. Kolmogorov, “On the limit theorems of probability theory”, Selected works of A. N. Kolmogorov, т. II, Math. Appl. (Soviet Ser.), 26, Kluwer Acad. Publ., Dordrecht, 1992, 147–155 | MR | Zbl | Zbl | MR | Zbl
[47] A. N. Kolmogorov, “K teorii nepreryvnykh sluchainykh protsessov”, Izbrannye trudy, v. 2, Nauka, M., 2005, 157–169 ; A. Kolmogoroff, “Zur Theorie der stetigen zufälligen Prozesse”, Math. Ann., 104:1 (1933), 149–160 ; A. N. Kolmogorov, “On the theory of continuous random processes”, Selected works of A. N. Kolmogorov, т. II, Math. Appl. (Soviet Ser.), 26, Kluwer Acad. Publ., Dordrecht, 1992, 156–168 | MR | Zbl | DOI | MR | Zbl | MR | Zbl
[48] A. N. Kolmogorov, “Ob obratimosti statisticheskikh zakonov prirody”, Izbrannye trudy, v. 2, Nauka, M., 2005, 207–213 ; A. Kolmogoroff, “Zur Umkehrbarkeit der statistischen Naturgesetze”, Math. Ann., 113:1 (1937), 766–772 ; A. N. Kolmogorov, “On the reversibility of the statistical laws of nature”, Selected works of A. N. Kolmogorov, т. II, Math. Appl. (Soviet Ser.), 26, Kluwer Acad. Publ., Dordrecht, 1992, 209–215 | MR | Zbl | DOI | MR | Zbl | MR | Zbl
[49] V. V. Kozlov, “The generalized Vlasov kinetic equation”, Russian Math. Surveys, 63:4 (2008), 691–726 | DOI | DOI | MR | Zbl
[50] T. I. Krasovitskii, “Degenerate elliptic equations and nonuniqueness of solutions to the Kolmogorov equation”, Dokl. Math., 100:1 (2019), 354–357 | DOI | DOI | MR | Zbl
[51] N. V. Krylov, “On diffusion processes with drift in $L_d$”, Probab. Theory Related Fields, 179:1-2 (2021), 165–199 | DOI | MR | Zbl
[52] N. V. Krylov, “On diffusion processes with drift in $L_{d+1}$”, Potential Anal., 2022, Publ. online | DOI
[53] Haesung Lee, W. Stannat, G. Trutnau, Analytic theory of Itô-stochastic differential equations with non-smooth coefficients, Springer Briefs Probab. Math. Stat., Springer, Singapore, 2022, xv+126 pp. | DOI | MR | Zbl
[54] Haesung Lee, G. Trutnau, “Existence and regularity of infinitesimally invariant measures, transition functions and time-homogeneous Itô-SDEs”, J. Evol. Equ., 21:1 (2021), 601–623 | DOI | MR | Zbl
[55] Haesung Lee, G. Trutnau, “Existence and uniqueness of (infinitesimally) invariant measures for second order partial differential operators on Euclidean space”, J. Math. Anal. Appl., 507:1 (2022), 125778, 31 pp. | DOI | MR | Zbl
[56] G. Metafune, D. Pallara, A. Rhandi, “Global properties of invariant measures”, J. Funct. Anal., 223:2 (2005), 396–424 | DOI | MR | Zbl
[57] G. Metafune, D. Pallara, A. Rhandi, “Global properties of transition probabilities of singular diffusions”, Teoriya veroyatn. i ee primen., 54:1 (2009), 116–148 ; Theory Probab. Appl., 54:1 (2010), 68–96 | DOI | MR | Zbl | DOI
[58] M. Planck, “Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie”, Sitzungsber. Preuß. Akad. Wiss., 1917, 324–341
[59] M. Rehmeier, “Existence of flows for linear Fokker–Planck–Kolmogorov equations and its connection to well-posedness”, J. Evol. Equ., 21:1 (2021), 17–31 | DOI | MR | Zbl
[60] S. V. Shaposhnikov, “On nonuniqueness of solutions to elliptic equations for probability measures”, J. Funct. Anal., 254:10 (2008), 2690–2705 | DOI | MR | Zbl
[61] P. Sjögren, “Harmonic spaces associated with adjoints of linear elliptic operators”, Ann. Inst. Fourier (Grenoble), 25:3-4 (1975), 509–518 | DOI | MR | Zbl
[62] G. N. Smirnova, “Cauchy problems for parabolic equations degenerating at infinity”, Fifteen papers on analysis, Amer. Math. Soc. Transl. Ser. 2, 72, Amer. Math. Soc., Providence, RI, 1968, 119–134 | DOI | MR | Zbl
[63] M. von Smoluchowski, “Über Brownsche Molekularbewegung unter Einwirkung äußerer Kräfte und den Zusammenhang mit der verallgemeinerten Diffusionsgleichung”, Ann. Phys., 353:24 (1916), 1103–1112 | DOI
[64] W. Stannat, “(Nonsymmetric) Dirichlet operators on $L^1$: existence, uniqueness and associated Markov processes”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28:1 (1999), 99–140 | MR | Zbl
[65] D. Trevisan, “Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients”, Electron. J. Probab., 21 (2016), 22, 41 pp. | DOI | MR | Zbl
[66] S. R. S. Varadhan, Lectures on diffusion problems and partial differential equations, Tata Inst. Fund. Res. Stud. Lect. Math. Phys., 64, Tata Inst. Fund. Res., Bombay, 1980, iii+315 pp. | MR | Zbl
[67] K. Yosida, “Integration of Fokker–Planck's equation in a compact Riemannian space”, Ark. Mat., 1 (1949), 71–75 | DOI | MR | Zbl