On the sum of Gaussian martingale and an independent fractional Brownian motion
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 383-392

Voir la notice de l'article provenant de la source Math-Net.Ru

In the same context as in the seminal paper [P. Cheridito, Bernoulli, 7 (2001), pp. 913–934], we are concerned with the semimartingale property of the sum of some Gaussian martingale and an independent fractional Brownian motion with Hurst parameter $H \in (0,1)$. At the same time, we emphasize that the Markov property is lost even if the martingale owns it.
Keywords: Gaussian martingale, semimartingale, entropy, equivalent measure, Markov process.
Mots-clés : quasimartingale
@article{TVP_2023_68_2_a9,
     author = {R. Belfadli and M. Chadad and M. Erraoui},
     title = {On the sum of {Gaussian} martingale and an independent fractional {Brownian} motion},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {383--392},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a9/}
}
TY  - JOUR
AU  - R. Belfadli
AU  - M. Chadad
AU  - M. Erraoui
TI  - On the sum of Gaussian martingale and an independent fractional Brownian motion
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 383
EP  - 392
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a9/
LA  - ru
ID  - TVP_2023_68_2_a9
ER  - 
%0 Journal Article
%A R. Belfadli
%A M. Chadad
%A M. Erraoui
%T On the sum of Gaussian martingale and an independent fractional Brownian motion
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 383-392
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a9/
%G ru
%F TVP_2023_68_2_a9
R. Belfadli; M. Chadad; M. Erraoui. On the sum of Gaussian martingale and an independent fractional Brownian motion. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 383-392. http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a9/