On the sum of Gaussian martingale and an independent fractional Brownian motion
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 383-392
Voir la notice de l'article provenant de la source Math-Net.Ru
In the same context as in the seminal paper
[P. Cheridito, Bernoulli, 7 (2001), pp. 913–934],
we are concerned with the semimartingale property of the sum of some Gaussian
martingale and an independent fractional Brownian motion with Hurst parameter $H
\in (0,1)$. At the same time, we emphasize that the Markov property is lost even
if the martingale owns it.
Keywords:
Gaussian martingale, semimartingale, entropy, equivalent measure, Markov process.
Mots-clés : quasimartingale
Mots-clés : quasimartingale
@article{TVP_2023_68_2_a9,
author = {R. Belfadli and M. Chadad and M. Erraoui},
title = {On the sum of {Gaussian} martingale and an independent fractional {Brownian} motion},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {383--392},
publisher = {mathdoc},
volume = {68},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a9/}
}
TY - JOUR AU - R. Belfadli AU - M. Chadad AU - M. Erraoui TI - On the sum of Gaussian martingale and an independent fractional Brownian motion JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2023 SP - 383 EP - 392 VL - 68 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a9/ LA - ru ID - TVP_2023_68_2_a9 ER -
%0 Journal Article %A R. Belfadli %A M. Chadad %A M. Erraoui %T On the sum of Gaussian martingale and an independent fractional Brownian motion %J Teoriâ veroâtnostej i ee primeneniâ %D 2023 %P 383-392 %V 68 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a9/ %G ru %F TVP_2023_68_2_a9
R. Belfadli; M. Chadad; M. Erraoui. On the sum of Gaussian martingale and an independent fractional Brownian motion. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 383-392. http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a9/