On the sum of Gaussian martingale and an independent fractional Brownian motion
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 383-392 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the same context as in the seminal paper [P. Cheridito, Bernoulli, 7 (2001), pp. 913–934], we are concerned with the semimartingale property of the sum of some Gaussian martingale and an independent fractional Brownian motion with Hurst parameter $H \in (0,1)$. At the same time, we emphasize that the Markov property is lost even if the martingale owns it.
Keywords: Gaussian martingale, semimartingale, entropy, equivalent measure, Markov process.
Mots-clés : quasimartingale
@article{TVP_2023_68_2_a9,
     author = {R. Belfadli and M. Chadad and M. Erraoui},
     title = {On the sum of {Gaussian} martingale and an independent fractional {Brownian} motion},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {383--392},
     year = {2023},
     volume = {68},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a9/}
}
TY  - JOUR
AU  - R. Belfadli
AU  - M. Chadad
AU  - M. Erraoui
TI  - On the sum of Gaussian martingale and an independent fractional Brownian motion
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 383
EP  - 392
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a9/
LA  - ru
ID  - TVP_2023_68_2_a9
ER  - 
%0 Journal Article
%A R. Belfadli
%A M. Chadad
%A M. Erraoui
%T On the sum of Gaussian martingale and an independent fractional Brownian motion
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 383-392
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a9/
%G ru
%F TVP_2023_68_2_a9
R. Belfadli; M. Chadad; M. Erraoui. On the sum of Gaussian martingale and an independent fractional Brownian motion. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 383-392. http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a9/

[1] P. Cheridito, “Mixed fractional Brownian motion”, Bernoulli, 7:6 (2001), 913–934 | DOI | MR | Zbl

[2] J. L. Doob, “Heuristic approach to the Kolmogorov–Smirnov theorems”, Ann. Math. Statistics, 20:3 (1949), 393–403 | DOI | MR | Zbl

[3] G. H. Golub, C. F. Van Loan, Matrix computations, Johns Hopkins Ser. Math. Sci., 3, 2nd ed., Johns Hopkins Univ. Press, Baltimore, MD, 1989, xxii+642 pp. | MR | Zbl

[4] T. Hida, M. Hitsuda, Gaussian processes, Transl. from the Japan., Transl. Math. Monogr., 120, Amer. Math. Soc., Providence, RI, 1993, xvi+183 pp. | MR | Zbl

[5] B. B. Mandelbrot, J. W. Van Ness, “Fractional Brownian motions, fractional noises and applications”, SIAM Rev., 10:4 (1968), 422–437 | DOI | MR | Zbl

[6] L. D. Minkova, D. I. Hadžiev, “Representation of Gaussian processes equivalent to a Gaussian martingale”, Stochastics, 3:4 (1980), 251–266 | DOI | MR | Zbl

[7] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Grundlehren Math. Wiss., 293, 3rd ed., Springer-Verlag, Berlin, 1999, xiv+602 pp. | DOI | MR | Zbl

[8] C. Stricker, “Quelques remarques sur les semimartingales gaussiennes et le problème de l'innovation”, Filtering and control of random processes (Paris, 1983), Lect. Notes Control Inf. Sci., 61, Springer, Berlin, 1984, 260–276 | DOI | MR | Zbl