@article{TVP_2023_68_2_a8,
author = {G. A. Afanasiev},
title = {Cost optimization of queueing systems with interruptions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {371--382},
year = {2023},
volume = {68},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a8/}
}
G. A. Afanasiev. Cost optimization of queueing systems with interruptions. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 371-382. http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a8/
[1] Y. Levy, U. Yechiali, “Utilization of idle time in an $M/G/1$ queuing system”, Management Sci., 22:2 (1975), 202–211 | DOI | Zbl
[2] B. T. Doshi, “Queueing systems with vacations — a survey”, Queueing Syst., 1:1 (1986), 29–66 | DOI | MR | Zbl
[3] B. T. Doshi, “Single server queues with vacations”, Stochastic analysis of computer and communication systems, Noth-Holland Publishing Co., Amsterdam, 1990, 217–265 | MR | Zbl
[4] H. Takagi, Queueing analysis: a foundation of performance evaluation, Part 1, v. 1, Vacation and priority systems, North-Holland Publishing Co., Amsterdam, 1991, xii+487 pp. | MR | Zbl
[5] Naishuo Tain, Zhe George Zhang, Vacation queueing models. Theory and applications, Internat. Ser. Oper. Res. Management Sci., 93, Springer, New York, 2006, xii+385 pp. | DOI | MR | Zbl
[6] L. D. Servi, S. G. Finn, “$\mathrm{M}/\mathrm{M}/1$ queues with working vacations ($\mathrm{M}|\mathrm{M}|1|\mathrm{WV}$)”, Performance Evaluation, 50:1 (2002), 41–52 | DOI
[7] G. A. Afanasyev, “A vacation queue $M|G|1$ with close-down times”, Theory Probab. Appl., 66:1 (2021), 1–14 | DOI | DOI | MR | Zbl
[8] Jihong Li, Naishuo Tian, “The $\mathrm{M}/\mathrm{M}/1$ queue with working vacations and vacation interruptions”, J. Syst. Sci. Syst. Eng., 16 (2007), 121–127 | DOI
[9] Ji-Hong Li, Nai-Shuo Tian, Zhan-You Ma, “Performance analysis of $\mathrm{GI}/\mathrm{M}/1$ queue with working vacations and vacation interruption”, Appl. Math. Model., 32:12 (2008), 2715–2730 | DOI | MR | Zbl
[10] Mian Zhang, Zhengting Hou, “Performance analysis of $\mathrm{M}/\mathrm{G}/1$ queue with working vacations and vacation interruption”, J. Comput. Appl. Math., 234:10 (2010), 2977–2985 | DOI | MR | Zbl
[11] C. Sreenivasan, S. R. Chakravarthy, A. Krishnamoorthy, “$MAP/PH/1$ queue with working vacations, vacation interruptions and $N$ policy”, Appl. Math. Model., 37:6 (2013), 3879–3893 | DOI | MR | Zbl
[12] O. C. Ibe, O. A. Isijola, “$\mathrm{M}/\mathrm{M}/1$ multiple vacation queueing systems with differentiated vacations”, Model. Simul. Eng., 2014 (2014), 158247, 6 pp. | DOI
[13] O. C. Ibe, “$\mathrm{M}/\mathrm{G}/1$ vacation queueing system with server timeout”, Amer. J. Oper. Res., 5:2 (2015), 77–88 | DOI
[14] B. V. Gnedenko, I. N. Kovalenko, Introduction to queueing theory, Math. Model., 5, Birkhäuser Boston, Inc., Boston, MA, 1989, xii+314 pp. | DOI | MR | Zbl
[15] D. R. Koks, V. L. Smit, Teoriya vosstanovleniya, Sov. radio, M., 1967, 299 pp. ; D. R. Cox, Renewal theory, Methuen Co., Ltd., London; John Wiley Sons, Inc., New York, 1962, ix+142 с. ; W. L. Smith, “Renewal theory and its ramifications”, J. Roy. Statist. Soc. Ser. B, 20:2 (1958), 243–302 | MR | Zbl | MR | Zbl | MR | Zbl