Cost optimization of queueing systems with interruptions
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 371-382 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a queueing system $M|G|1$ with possible vacations in server operations for principal customers (for example, if a server is leased). A cost optimization problem is solved. As control parameters, we use the probability $\alpha$ of the vacation and its duration. Under fairly general assumptions about the system behavior during vacations, we show that the optimal value of the probability $\alpha$ is either 0 or 1. We also give necessary and sufficient conditions for a vacation to be carried out, i.e., $\alpha=1$. With constant vacation durations, we find conditions such that $\alpha=1$, and the vacation duration is optimal. Two examples are considered. In the first example, the revenue from the vacation is a linear function of its duration, and, in the second example, the revenue is a quadratic function.
Keywords: queueing system, queueing vacation, stationary distribution.
@article{TVP_2023_68_2_a8,
     author = {G. A. Afanasiev},
     title = {Cost optimization of queueing systems with interruptions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {371--382},
     year = {2023},
     volume = {68},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a8/}
}
TY  - JOUR
AU  - G. A. Afanasiev
TI  - Cost optimization of queueing systems with interruptions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 371
EP  - 382
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a8/
LA  - ru
ID  - TVP_2023_68_2_a8
ER  - 
%0 Journal Article
%A G. A. Afanasiev
%T Cost optimization of queueing systems with interruptions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 371-382
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a8/
%G ru
%F TVP_2023_68_2_a8
G. A. Afanasiev. Cost optimization of queueing systems with interruptions. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 371-382. http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a8/

[1] Y. Levy, U. Yechiali, “Utilization of idle time in an $M/G/1$ queuing system”, Management Sci., 22:2 (1975), 202–211 | DOI | Zbl

[2] B. T. Doshi, “Queueing systems with vacations — a survey”, Queueing Syst., 1:1 (1986), 29–66 | DOI | MR | Zbl

[3] B. T. Doshi, “Single server queues with vacations”, Stochastic analysis of computer and communication systems, Noth-Holland Publishing Co., Amsterdam, 1990, 217–265 | MR | Zbl

[4] H. Takagi, Queueing analysis: a foundation of performance evaluation, Part 1, v. 1, Vacation and priority systems, North-Holland Publishing Co., Amsterdam, 1991, xii+487 pp. | MR | Zbl

[5] Naishuo Tain, Zhe George Zhang, Vacation queueing models. Theory and applications, Internat. Ser. Oper. Res. Management Sci., 93, Springer, New York, 2006, xii+385 pp. | DOI | MR | Zbl

[6] L. D. Servi, S. G. Finn, “$\mathrm{M}/\mathrm{M}/1$ queues with working vacations ($\mathrm{M}|\mathrm{M}|1|\mathrm{WV}$)”, Performance Evaluation, 50:1 (2002), 41–52 | DOI

[7] G. A. Afanasyev, “A vacation queue $M|G|1$ with close-down times”, Theory Probab. Appl., 66:1 (2021), 1–14 | DOI | DOI | MR | Zbl

[8] Jihong Li, Naishuo Tian, “The $\mathrm{M}/\mathrm{M}/1$ queue with working vacations and vacation interruptions”, J. Syst. Sci. Syst. Eng., 16 (2007), 121–127 | DOI

[9] Ji-Hong Li, Nai-Shuo Tian, Zhan-You Ma, “Performance analysis of $\mathrm{GI}/\mathrm{M}/1$ queue with working vacations and vacation interruption”, Appl. Math. Model., 32:12 (2008), 2715–2730 | DOI | MR | Zbl

[10] Mian Zhang, Zhengting Hou, “Performance analysis of $\mathrm{M}/\mathrm{G}/1$ queue with working vacations and vacation interruption”, J. Comput. Appl. Math., 234:10 (2010), 2977–2985 | DOI | MR | Zbl

[11] C. Sreenivasan, S. R. Chakravarthy, A. Krishnamoorthy, “$MAP/PH/1$ queue with working vacations, vacation interruptions and $N$ policy”, Appl. Math. Model., 37:6 (2013), 3879–3893 | DOI | MR | Zbl

[12] O. C. Ibe, O. A. Isijola, “$\mathrm{M}/\mathrm{M}/1$ multiple vacation queueing systems with differentiated vacations”, Model. Simul. Eng., 2014 (2014), 158247, 6 pp. | DOI

[13] O. C. Ibe, “$\mathrm{M}/\mathrm{G}/1$ vacation queueing system with server timeout”, Amer. J. Oper. Res., 5:2 (2015), 77–88 | DOI

[14] B. V. Gnedenko, I. N. Kovalenko, Introduction to queueing theory, Math. Model., 5, Birkhäuser Boston, Inc., Boston, MA, 1989, xii+314 pp. | DOI | MR | Zbl

[15] D. R. Koks, V. L. Smit, Teoriya vosstanovleniya, Sov. radio, M., 1967, 299 pp. ; D. R. Cox, Renewal theory, Methuen Co., Ltd., London; John Wiley Sons, Inc., New York, 1962, ix+142 с. ; W. L. Smith, “Renewal theory and its ramifications”, J. Roy. Statist. Soc. Ser. B, 20:2 (1958), 243–302 | MR | Zbl | MR | Zbl | MR | Zbl