Complete and complete integral convergence for
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 344-367 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study complete and complete integration convergence for arrays of rowwise extended negatively dependent random variables under sublinear expectations. Our results generalize complete moment convergence results of [T.-C. Hu, K.-L. Wang, and A. Rosalsky, Sankhya A, 77 (2015), pp. 1–29] and [Y. Wu, M. Ordóñez Cabrera, and A. Volodin, Glas. Mat. Ser. III, 49(69) (2014), pp. 447–466] from classical probability spaces to spaces with sublinear expectation.
Keywords: random environment, small deviation probability, partial sums of independent random variables.
@article{TVP_2023_68_2_a6,
     author = {M. M. Xi and X. Q. Li and L. Chen and X. J. Wang},
     title = {Complete and complete integral convergence for},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {344--367},
     year = {2023},
     volume = {68},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a6/}
}
TY  - JOUR
AU  - M. M. Xi
AU  - X. Q. Li
AU  - L. Chen
AU  - X. J. Wang
TI  - Complete and complete integral convergence for
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 344
EP  - 367
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a6/
LA  - ru
ID  - TVP_2023_68_2_a6
ER  - 
%0 Journal Article
%A M. M. Xi
%A X. Q. Li
%A L. Chen
%A X. J. Wang
%T Complete and complete integral convergence for
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 344-367
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a6/
%G ru
%F TVP_2023_68_2_a6
M. M. Xi; X. Q. Li; L. Chen; X. J. Wang. Complete and complete integral convergence for. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 344-367. http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a6/

[1] Zengjing Chen, Feng Hu, “A law of the iterated logarithm under sublinear expectations”, Int. J. Financ. Eng., 1:2 (2014), 1450015, 23 pp. | DOI | MR

[2] Zengjing Chen, Panyu Wu, Baoming Li, “A strong law of large numbers for non-additive probabilities”, Internat. J. Approx. Reason., 54:3 (2013), 365–377 | DOI | MR | Zbl

[3] L. Denis, C. Martini, “A theoretical framework for the pricing of contingent claims in the presence of model uncertainty”, Ann. Appl. Probab., 16:2 (2006), 827–852 | DOI | MR | Zbl

[4] I. Gilboa, “Expected utility with purely subjective non-additive probabilities”, J. Math. Econom., 16:1 (1987), 65–88 | DOI | MR | Zbl

[5] A. Gut, U. Stadtmüller, “Cesáro summation for random fields”, J. Theoret. Probab., 23:3 (2010), 715–728 | DOI | MR | Zbl

[6] Tien-Chung Hu, Kuo-Lung Wang, A. Rosalsky, “Complete convergence theorems for extended negatively dependent random variables”, Sankhyā A, 77:1 (2015), 1–29 | DOI | MR | Zbl

[7] Lu Lin, Ping Dong, Yunquan Song, Lixing Zhu, “Upper expectation parametric regression”, Statist. Sinica, 27:3 (2017), 1265–1280 | DOI | MR | Zbl

[8] Lu Lin, Yufeng Shi, Xin Wang, Shuzhen Yang, Sublinear expectation linear regression, 2013, 47 pp., arXiv: 1304.3559

[9] F. Maccheroni, M. Marinacci, “A strong law of large numbers for capacities”, Ann. Probab., 33:3 (2005), 1171–1178 | DOI | MR | Zbl

[10] Shige Peng, “Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob–Meyer's type”, Probab. Theory Related Fields, 113:4 (1999), 473–499 | DOI | MR | Zbl

[11] Shige Peng, “$G$-expectation, $G$-Brownian motion and related stochastic calculus of Itô type”, Stochastic analysis and applications, Abel Symp., 2, Springer, Berlin, 2007, 541–567 | DOI | MR | Zbl

[12] Shige Peng, “Multi-dimensional $G$-Brownian motion and related stochastic calculus under $G$-expectation”, Stochastic Process. Appl., 118:12 (2008), 2223–2253 | DOI | MR | Zbl

[13] Shige Peng, A new central limit theorem under sublinear expectations, 2008, 25 pp., arXiv: 0803.2656

[14] Shige Peng, Nonlinear expectations and stochastic calculus under uncertainty. With robust CLT and G-Brownian motion, Probab. Theory Stoch. Model., 95, Springer, Berlin, 2019, xiii+212 pp. ; 2010, 149 pp., arXiv: 1002.4546 | DOI | MR | Zbl

[15] Dehua Qiu, Pingyan Chen, R. G. Antonini, A. Volodin, “On the complete convergence for arrays of rowwise extended negatively dependent random variables”, J. Korean Math. Soc., 50:2 (2013), 379–392 | DOI | MR | Zbl

[16] Aiting Shen, “Complete convergence for weighted sums of END random variables and its application to nonparametric regression models”, J. Nonparametr. Stat., 28:4 (2016), 702–715 | DOI | MR | Zbl

[17] Aiting Shen, A. Volodin, “Weak and strong laws of large numbers for arrays of rowwise END random variables and their applications”, Metrika, 80:6-8 (2017), 605–625 | DOI | MR | Zbl

[18] Aiting Shen, Mei Yao, Benqiong Xiao, “Equivalent conditions of complete convergence and complete moment convergence for END random variables”, Chinese Ann. Math. Ser. B, 39:1 (2018), 83–96 | DOI | MR | Zbl

[19] Xuejun Wang, Aiting Shen, Zhiyong Chen, Shuhe Hu, “Complete convergence for weighted sums of NSD random variables and its application in the EV regression model”, TEST, 24:1 (2015), 166–184 | DOI | MR | Zbl

[20] Xuejun Wang, Chen Xu, Tien-Chung Hu, A. Volodin, Shuhe Hu, “On complete convergence for widely orthant-dependent random variables and its applications in nonparametric regression models”, TEST, 23:3 (2014), 607–629 | DOI | MR | Zbl

[21] Qunying Wu, Yuanying Jiang, “Strong law of large numbers and Chover's law of the iterated logarithm under sub-linear expectations”, J. Math. Anal. Appl., 460:1 (2018), 252–270 | DOI | MR | Zbl

[22] Yi Wu, Xuejun Wang, Lixin Zhang, “On the asymptotic approximation of inverse moment under sub-linear expectations”, J. Math. Anal. Appl., 468:1 (2018), 182–196 | DOI | MR | Zbl

[23] Yongfeng Wu, M. Ordóñez Cabrera, A. Volodin, “Complete convergence and complete moment convergence for arrays of rowwise END random variables”, Glas. Mat. Ser. III, 49(69):2 (2014), 447–466 | DOI | MR | Zbl

[24] Guodong Xing, Shanchao Yang, “Some exponential inequalities for positively associated random variables and rates of convergence of the strong law of large numbers”, J. Theoret. Probab., 23:1 (2010), 169–192 | DOI | MR | Zbl

[25] Jia Pan Xu, Li Xin Zhang, “Three series theorem for independent random variables under sub-linear expectations with applications”, Acta Math. Sin. (Engl. Ser.), 35:2 (2019), 172–184 ; (2017), 12 pp., arXiv: 1712.08279 | DOI | MR | Zbl

[26] Li-Xin Zhang, “Donsker's invariance principle under the sub-linear expectation with an application to Chung's law of the iterated logarithm”, Commun. Math. Stat., 3:2 (2015), 187–214 | DOI | MR | Zbl

[27] LiXin Zhang, “Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm”, Sci. China Math., 59:12 (2016), 2503–2526 | DOI | MR | Zbl

[28] LiXin Zhang, “Rosenthal's inequalities for independent and negatively dependent random variables under sub-linear expectations with applications”, Sci. China Math., 59:4 (2016), 751–768 | DOI | MR | Zbl

[29] Li-Xin Zhang, Strong limit theorems for extended independent and extended negatively dependent random variables under non-linear expectations, 2016, 31 pp., arXiv: 1608.00710

[30] Haoyuan Zhong, Qunying Wu, “Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation”, J. Inequal. Appl., 2017 (2017), 261, 14 pp. | DOI | MR | Zbl