Complete and complete integral convergence for
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 344-367
Voir la notice de l'article provenant de la source Math-Net.Ru
We study complete and complete integration convergence
for arrays of rowwise extended negatively dependent
random variables under sublinear expectations.
Our results generalize complete moment convergence results
of [T.-C. Hu, K.-L. Wang, and A. Rosalsky, Sankhya A, 77 (2015), pp. 1–29] and [Y. Wu, M. Ordóñez Cabrera, and A. Volodin, Glas. Mat. Ser. III, 49(69) (2014), pp. 447–466]
from classical probability spaces to spaces with sublinear expectation.
Keywords:
random environment, small deviation probability, partial sums of independent random variables.
@article{TVP_2023_68_2_a6,
author = {M. M. Xi and X. Q. Li and L. Chen and X. J. Wang},
title = {Complete and complete integral convergence for},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {344--367},
publisher = {mathdoc},
volume = {68},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a6/}
}
TY - JOUR AU - M. M. Xi AU - X. Q. Li AU - L. Chen AU - X. J. Wang TI - Complete and complete integral convergence for JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2023 SP - 344 EP - 367 VL - 68 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a6/ LA - ru ID - TVP_2023_68_2_a6 ER -
M. M. Xi; X. Q. Li; L. Chen; X. J. Wang. Complete and complete integral convergence for. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 344-367. http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a6/