Complete and complete integral convergence for
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 344-367

Voir la notice de l'article provenant de la source Math-Net.Ru

We study complete and complete integration convergence for arrays of rowwise extended negatively dependent random variables under sublinear expectations. Our results generalize complete moment convergence results of [T.-C. Hu, K.-L. Wang, and A. Rosalsky, Sankhya A, 77 (2015), pp. 1–29] and [Y. Wu, M. Ordóñez Cabrera, and A. Volodin, Glas. Mat. Ser. III, 49(69) (2014), pp. 447–466] from classical probability spaces to spaces with sublinear expectation.
Keywords: random environment, small deviation probability, partial sums of independent random variables.
@article{TVP_2023_68_2_a6,
     author = {M. M. Xi and X. Q. Li and L. Chen and X. J. Wang},
     title = {Complete and complete integral convergence for},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {344--367},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a6/}
}
TY  - JOUR
AU  - M. M. Xi
AU  - X. Q. Li
AU  - L. Chen
AU  - X. J. Wang
TI  - Complete and complete integral convergence for
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 344
EP  - 367
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a6/
LA  - ru
ID  - TVP_2023_68_2_a6
ER  - 
%0 Journal Article
%A M. M. Xi
%A X. Q. Li
%A L. Chen
%A X. J. Wang
%T Complete and complete integral convergence for
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 344-367
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a6/
%G ru
%F TVP_2023_68_2_a6
M. M. Xi; X. Q. Li; L. Chen; X. J. Wang. Complete and complete integral convergence for. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 344-367. http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a6/