@article{TVP_2023_68_2_a6,
author = {M. M. Xi and X. Q. Li and L. Chen and X. J. Wang},
title = {Complete and complete integral convergence for},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {344--367},
year = {2023},
volume = {68},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a6/}
}
M. M. Xi; X. Q. Li; L. Chen; X. J. Wang. Complete and complete integral convergence for. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 344-367. http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a6/
[1] Zengjing Chen, Feng Hu, “A law of the iterated logarithm under sublinear expectations”, Int. J. Financ. Eng., 1:2 (2014), 1450015, 23 pp. | DOI | MR
[2] Zengjing Chen, Panyu Wu, Baoming Li, “A strong law of large numbers for non-additive probabilities”, Internat. J. Approx. Reason., 54:3 (2013), 365–377 | DOI | MR | Zbl
[3] L. Denis, C. Martini, “A theoretical framework for the pricing of contingent claims in the presence of model uncertainty”, Ann. Appl. Probab., 16:2 (2006), 827–852 | DOI | MR | Zbl
[4] I. Gilboa, “Expected utility with purely subjective non-additive probabilities”, J. Math. Econom., 16:1 (1987), 65–88 | DOI | MR | Zbl
[5] A. Gut, U. Stadtmüller, “Cesáro summation for random fields”, J. Theoret. Probab., 23:3 (2010), 715–728 | DOI | MR | Zbl
[6] Tien-Chung Hu, Kuo-Lung Wang, A. Rosalsky, “Complete convergence theorems for extended negatively dependent random variables”, Sankhyā A, 77:1 (2015), 1–29 | DOI | MR | Zbl
[7] Lu Lin, Ping Dong, Yunquan Song, Lixing Zhu, “Upper expectation parametric regression”, Statist. Sinica, 27:3 (2017), 1265–1280 | DOI | MR | Zbl
[8] Lu Lin, Yufeng Shi, Xin Wang, Shuzhen Yang, Sublinear expectation linear regression, 2013, 47 pp., arXiv: 1304.3559
[9] F. Maccheroni, M. Marinacci, “A strong law of large numbers for capacities”, Ann. Probab., 33:3 (2005), 1171–1178 | DOI | MR | Zbl
[10] Shige Peng, “Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob–Meyer's type”, Probab. Theory Related Fields, 113:4 (1999), 473–499 | DOI | MR | Zbl
[11] Shige Peng, “$G$-expectation, $G$-Brownian motion and related stochastic calculus of Itô type”, Stochastic analysis and applications, Abel Symp., 2, Springer, Berlin, 2007, 541–567 | DOI | MR | Zbl
[12] Shige Peng, “Multi-dimensional $G$-Brownian motion and related stochastic calculus under $G$-expectation”, Stochastic Process. Appl., 118:12 (2008), 2223–2253 | DOI | MR | Zbl
[13] Shige Peng, A new central limit theorem under sublinear expectations, 2008, 25 pp., arXiv: 0803.2656
[14] Shige Peng, Nonlinear expectations and stochastic calculus under uncertainty. With robust CLT and G-Brownian motion, Probab. Theory Stoch. Model., 95, Springer, Berlin, 2019, xiii+212 pp. ; 2010, 149 pp., arXiv: 1002.4546 | DOI | MR | Zbl
[15] Dehua Qiu, Pingyan Chen, R. G. Antonini, A. Volodin, “On the complete convergence for arrays of rowwise extended negatively dependent random variables”, J. Korean Math. Soc., 50:2 (2013), 379–392 | DOI | MR | Zbl
[16] Aiting Shen, “Complete convergence for weighted sums of END random variables and its application to nonparametric regression models”, J. Nonparametr. Stat., 28:4 (2016), 702–715 | DOI | MR | Zbl
[17] Aiting Shen, A. Volodin, “Weak and strong laws of large numbers for arrays of rowwise END random variables and their applications”, Metrika, 80:6-8 (2017), 605–625 | DOI | MR | Zbl
[18] Aiting Shen, Mei Yao, Benqiong Xiao, “Equivalent conditions of complete convergence and complete moment convergence for END random variables”, Chinese Ann. Math. Ser. B, 39:1 (2018), 83–96 | DOI | MR | Zbl
[19] Xuejun Wang, Aiting Shen, Zhiyong Chen, Shuhe Hu, “Complete convergence for weighted sums of NSD random variables and its application in the EV regression model”, TEST, 24:1 (2015), 166–184 | DOI | MR | Zbl
[20] Xuejun Wang, Chen Xu, Tien-Chung Hu, A. Volodin, Shuhe Hu, “On complete convergence for widely orthant-dependent random variables and its applications in nonparametric regression models”, TEST, 23:3 (2014), 607–629 | DOI | MR | Zbl
[21] Qunying Wu, Yuanying Jiang, “Strong law of large numbers and Chover's law of the iterated logarithm under sub-linear expectations”, J. Math. Anal. Appl., 460:1 (2018), 252–270 | DOI | MR | Zbl
[22] Yi Wu, Xuejun Wang, Lixin Zhang, “On the asymptotic approximation of inverse moment under sub-linear expectations”, J. Math. Anal. Appl., 468:1 (2018), 182–196 | DOI | MR | Zbl
[23] Yongfeng Wu, M. Ordóñez Cabrera, A. Volodin, “Complete convergence and complete moment convergence for arrays of rowwise END random variables”, Glas. Mat. Ser. III, 49(69):2 (2014), 447–466 | DOI | MR | Zbl
[24] Guodong Xing, Shanchao Yang, “Some exponential inequalities for positively associated random variables and rates of convergence of the strong law of large numbers”, J. Theoret. Probab., 23:1 (2010), 169–192 | DOI | MR | Zbl
[25] Jia Pan Xu, Li Xin Zhang, “Three series theorem for independent random variables under sub-linear expectations with applications”, Acta Math. Sin. (Engl. Ser.), 35:2 (2019), 172–184 ; (2017), 12 pp., arXiv: 1712.08279 | DOI | MR | Zbl
[26] Li-Xin Zhang, “Donsker's invariance principle under the sub-linear expectation with an application to Chung's law of the iterated logarithm”, Commun. Math. Stat., 3:2 (2015), 187–214 | DOI | MR | Zbl
[27] LiXin Zhang, “Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm”, Sci. China Math., 59:12 (2016), 2503–2526 | DOI | MR | Zbl
[28] LiXin Zhang, “Rosenthal's inequalities for independent and negatively dependent random variables under sub-linear expectations with applications”, Sci. China Math., 59:4 (2016), 751–768 | DOI | MR | Zbl
[29] Li-Xin Zhang, Strong limit theorems for extended independent and extended negatively dependent random variables under non-linear expectations, 2016, 31 pp., arXiv: 1608.00710
[30] Haoyuan Zhong, Qunying Wu, “Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation”, J. Inequal. Appl., 2017 (2017), 261, 14 pp. | DOI | MR | Zbl