Quenched small deviation for the trajectory of a~random walk with random environment in time
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 322-343

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the small deviation probability for a random walk with random environment in time. Compared to [A. A. Mogul'skii, Theory Probab. Appl., 19 (1975), pp. 726–736], for the independent and identically distributed (i.i.d.) random walk, the rate is smaller (due to the random environment), which is specified in terms of the quenched and annealed variance.
Keywords: random environment, small deviation probability, partial sums of independent random variables.
@article{TVP_2023_68_2_a5,
     author = {Y. Lv and W. Hong},
     title = {Quenched small deviation for the trajectory of a~random walk with random environment in time},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {322--343},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a5/}
}
TY  - JOUR
AU  - Y. Lv
AU  - W. Hong
TI  - Quenched small deviation for the trajectory of a~random walk with random environment in time
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 322
EP  - 343
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a5/
LA  - ru
ID  - TVP_2023_68_2_a5
ER  - 
%0 Journal Article
%A Y. Lv
%A W. Hong
%T Quenched small deviation for the trajectory of a~random walk with random environment in time
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 322-343
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a5/
%G ru
%F TVP_2023_68_2_a5
Y. Lv; W. Hong. Quenched small deviation for the trajectory of a~random walk with random environment in time. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 322-343. http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a5/