Quenched small deviation for the trajectory of a random walk with random environment in time
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 322-343 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the small deviation probability for a random walk with random environment in time. Compared to [A. A. Mogul'skii, Theory Probab. Appl., 19 (1975), pp. 726–736], for the independent and identically distributed (i.i.d.) random walk, the rate is smaller (due to the random environment), which is specified in terms of the quenched and annealed variance.
Keywords: random environment, small deviation probability, partial sums of independent random variables.
@article{TVP_2023_68_2_a5,
     author = {Y. Lv and W. Hong},
     title = {Quenched small deviation for the trajectory of a~random walk with random environment in time},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {322--343},
     year = {2023},
     volume = {68},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a5/}
}
TY  - JOUR
AU  - Y. Lv
AU  - W. Hong
TI  - Quenched small deviation for the trajectory of a random walk with random environment in time
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 322
EP  - 343
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a5/
LA  - ru
ID  - TVP_2023_68_2_a5
ER  - 
%0 Journal Article
%A Y. Lv
%A W. Hong
%T Quenched small deviation for the trajectory of a random walk with random environment in time
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 322-343
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a5/
%G ru
%F TVP_2023_68_2_a5
Y. Lv; W. Hong. Quenched small deviation for the trajectory of a random walk with random environment in time. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 322-343. http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a5/

[1] A. A. Mogul'skii, “Small deviations in the space of trajectories”, Theory Probab. Appl., 19:1 (1975), 726–736 | DOI | MR | Zbl

[2] A. de Acosta, “Small deviations in the functional central limit theorem with applications to functional laws of the iterated logarithm”, Ann. Probab., 11:1 (1983), 78–101 | DOI | MR | Zbl

[3] M. Talagrand, “New Gaussian estimates for enlarged balls”, Geom. Funct. Anal., 3:5 (1993), 502–526 | DOI | MR | Zbl

[4] Yimin Xiao, “Hausdorff-type measures of the sample paths of fractional Brownian motion”, Stochastic Process. Appl., 74:2 (1998), 251–272 | DOI | MR | Zbl

[5] N. Gantert, Yueyun Hu, Zhan Shi, “Asymptotics for the survival probability in a killed branching random walk”, Ann. Inst. Henri Poincaré Probab. Stat., 47:1 (2011), 111–129 | DOI | MR | Zbl

[6] B. Jaffuel, “The critical barrier for the survival of branching random walk with absorption”, Ann. Inst. Henri Poincaré Probab. Stat., 48:4 (2012), 989–1009 | DOI | MR | Zbl

[7] J. Kuelbs, W. V. Li, “Metric entropy and the small ball problem for Gaussian measures”, J. Funct. Anal., 116:1 (1993), 133–157 | DOI | MR | Zbl

[8] Wenbo V. Li, W. Linde, “Approximation, metric entropy and small ball estimates for Gaussian measures”, Ann. Probab., 27:3 (1999), 1556–1578 | DOI | MR | Zbl

[9] A. A. Borovkov, A. A. Mogul'skii, “On probabilities of small deviations for stochastic processes”, Siberian Adv. Math., 1:1 (1991), 39–63 | MR | MR | Zbl | Zbl

[10] Q. M. Shao, “A small deviation theorem for independent random variables”, Teoriya veroyatn. i ee primen., 40:1 (1995), 225–235 | MR | Zbl

[11] M. Ledoux, “Isoperimetry and Gaussian analysis”, Lectures on probability theory and statistics (Saint-Flour, 1994), Lecture Notes in Math., 1648, Springer, Berlin, 1996, 165–294 | DOI | MR | Zbl

[12] W. V. Li, Q.-M. Shao, “Gaussian processes: inequalities, small ball probabilities and applications”, Stochastic processes: theory and methods, Handbook of Statist., 19, North Holland, Amsterdam, 2001, 533–597 | DOI | MR | Zbl

[13] Wenbo V. Li, W. Linde, “Existence of small ball constants for fractional Brownian motions”, C. R. Acad. Sci. Paris Sér. I Math., 326:11 (1998), 1329–1334 | DOI | MR | Zbl

[14] F. Aurzada, M. A. Lifshits, “Small deviations of sums of correlated stationary Gaussian sequences”, Theory Probab. Appl., 61:4 (2017), 540–568 | DOI | DOI | MR | Zbl

[15] A. N. Frolov, A. I. Martikainen, J. Steinebach, “On probabilities of small deviations for compound renewal processes”, Theory Probab. Appl., 52:2 (2008), 328–337 | DOI | DOI | MR | Zbl

[16] A. N. Frolov, “Limit theorems for small deviation probabilities of some iterated stochastic processes”, J. Math. Sci. (N.Y.), 188:6 (2013), 761–768 | DOI | MR | Zbl

[17] O. Zeitouni, “Random walks in random environment”, Lectures on probability theory and statistics, Lecture Notes in Math., 1837, Springer, Berlin, 2004, 190–312 | DOI | MR | Zbl

[18] B. Mallein, P. Miłoś, “Brownian motion and random walks above quenched random wall”, Ann. Inst. Henri Poincaré Probab. Stat., 54:4 (2018), 1877–1916 | DOI | MR | Zbl

[19] B. Mallein, “Maximal displacement in a branching random walk through interfaces”, Electron. J. Probab., 20 (2015), 68, 40 pp. | DOI | MR | Zbl

[20] B. Mallein, P. Miłoś, “Maximal displacement of a supercritical branching random walk in a time-inhomogeneous random environment”, Stochastic Process. Appl., 129:9 (2019), 3239–3260 | DOI | MR | Zbl

[21] You Lv, Wenming Hong, On the barrier problem of branching random walk in time-inhomogeneous random environment, 2022, 37 pp., arXiv: 2202.13173

[22] You Lv, “Brownian motion between two random trajectories”, Markov Process. Related Fields, 25:2 (2019), 359–377 | MR | Zbl

[23] S. Dereich, M. A. Lifshits, “Probabilities of randomly centered small balls and quantization in Banach spaces”, Ann. Probab., 33:4 (2005), 1397–1421 | DOI | MR | Zbl

[24] A. I. Sakhanenko, “Estimates in the invariance principle in terms of truncated power moments”, Siberian Math. J., 47:6 (2006), 1113–1127 | DOI | MR | Zbl

[25] M. Csörgő, P. Révész, “How big are the increments of a Wiener process?”, Ann. Probab., 7:4 (1979), 731–737 | DOI | MR | Zbl

[26] A. Dembo, O. Zeitouni, Large deviations techniques and applications, Appl. Math. (N. Y.), 38, 2nd ed., Springer-Verlag, New York, 1998, xvi+396 pp. | MR | Zbl

[27] K. Itô, H. P. McKean, Jr., Diffusion processes and their sample paths, Grundlehren Math. Wiss., 125, 2nd corr. printing, Springer-Verlag, Berlin–New York, 1974, xv+321 pp. | MR | Zbl | Zbl