@article{TVP_2023_68_2_a4,
author = {C. Banerjee and L. A. Sakhanenko and D. C. Zhu},
title = {Global rate optimality of integral curve estimators},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {301--321},
year = {2023},
volume = {68},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a4/}
}
C. Banerjee; L. A. Sakhanenko; D. C. Zhu. Global rate optimality of integral curve estimators. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 301-321. http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a4/
[1] C. Banerjee, L. Sakhanenko, D. C. Zhu, “Lower bounds for accuracy of estimation in magnetic resonance high angular resolution diffusion imaging data”, J. Indian Soc. Probab. Statist., 21:1 (2020), 1–41 | DOI
[2] C. Banerjee, L. Sakhanenko, D. C. Zhu, “Global rate optimality of integral curve estimators in high order tensor models: Supplemental material”, Theory Probab. Appl. (to appear)
[3] O. Carmichael, L. Sakhanenko, “Estimation of integral curves from high angular resolution diffusion imaging (HARDI) data”, Linear Algebra Appl., 473 (2015), 377–403 | DOI | MR | Zbl
[4] O. Carmichael, L. Sakhanenko, “Integral curves from noisy diffusion MRI data with closed-form uncertainty estimates”, Stat. Inference Stoch. Process., 19:3 (2016), 289–319 | DOI | MR | Zbl
[5] Soo-Eun Chang, D. C. Zhu, “Neural network connectivity differences in children who stutter”, Brain, 136:12 (2013), 3709–3726 | DOI
[6] C. Chicone, Ordinary differential equations with applications, Texts Appl. Math., 34, 2nd ed., Springer, New York, 2006, xx+636 pp. | DOI | MR | Zbl
[7] L. de Lathauwer, B. de Moor, J. Vandewalle, “On the best rank-1 and rank-$(R_1,R_2,\dots,R_N)$ approximation of higher-order tensors”, SIAM J. Matrix Anal. Appl., 21:4 (2000), 1324–1342 | DOI | MR | Zbl
[8] L. Devroye, A course in density estimation, Progr. Probab. Statist., 14, Birkhäuser Boston, Inc., Boston, MA, 1987, xx+183 pp. | MR | Zbl
[9] T. S. Ferguson, Mathematical statistics. A decision theoretic approach, Probab. Math. Statist., 1, Academic Press, New York–London, 1967, xi+396 pp. | MR | Zbl
[10] A. Guntuboyina, B. Sen, “Global risk bounds and adaptation in univariate convex regression”, Probab. Theory Related Fields, 163:1-2 (2015), 379–411 | DOI | MR | Zbl
[11] R. Hasminskii, I. Ibragimov, “On density estimation in the view of Kolmogorov's ideas in approximation theory”, Ann. Statist., 18:3 (1990), 999–1010 | DOI | MR | Zbl
[12] I. A. Ibragimov, R. Z. Has'minskii, Statistical estimation. Asymptotic theory, Appl. Math., 16, Springer-Verlag, New York–Berlin, 1981, vii+403 pp. | DOI | MR | MR | Zbl | Zbl
[13] I. A. Ibragimov, R. Z. Khas'minskii, “Estimation of distribution density”, J. Soviet Math., 21:1 (1983), 40–57 | DOI | MR | Zbl
[14] I. A. Ibragimov, R. Z. Khas'minskii, “More on the estimation of distribution densities”, J. Soviet Math., 25:3 (1984), 1155–1165 | DOI | MR | Zbl
[15] A. K. H. Kim, R. J. Samworth, “Global rates of convergence in log-concave density estimation”, Ann. Statist., 44:6 (2016), 2756–2779 | DOI | MR | Zbl
[16] V. Koltchinskii, L. Sakhanenko, Songhe Cai, “Integral curves of noisy vector fields and statistical problems in diffusion tensor imaging: nonparametric kernel estimation and hypotheses testing”, Ann. Statist., 35:4 (2007), 1576–1607 | DOI | MR | Zbl
[17] D. Le Bihan, J. F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko, H. Chabriat, “Diffusion tensor imaging: concepts and applications”, J. Magn. Reson. Imaging, 13:4 (2001), 534–546 | DOI
[18] E. Mammen, S. van de Geer, “Locally adaptive regression splines”, Ann. Statist., 25:1 (1997), 387–413 | DOI | MR | Zbl
[19] Guyan Ni, Yiju Wang, “On the best rank-1 approximation to higher-order symmetric tensors”, Math. Comput. Modelling, 46:9-10 (2007), 1345–1352 | DOI | MR | Zbl
[20] E. Özarslan, T. Mareci, “Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging”, Magn. Reson. Med., 50:5 (2003), 955–965 | DOI
[21] G. Raskutti, M. J. Wainwright, Bin Yu, “Minimax-optimal rates for sparse additive models over kernel classes via convex programming”, J. Mach. Learn. Res., 13 (2012), 389–427 | MR | Zbl
[22] L. Sakhanenko, “A global optimal convergence rate in a model for the diffusion tensor imaging”, Theory Probab. Appl., 55:1 (2011), 77–90 | DOI | DOI | MR | Zbl
[23] L. Sakhanenko, “How to choose the number of gradient directions for estimation problems from noisy diffusion tensor data”, Contemporary developments in statistical theory, A festschrift for Hira Lal Koul, Springer Proc. Math. Stat., 68, Springer, Cham, 2014, 305–310 | DOI | MR | Zbl
[24] L. Sakhanenko, M. DeLaura, “A comparison study of statistical tractography methodologies for diffusion tensor imaging”, Int. J. Stat. Adv. Theory Appl., 1:1 (2017), 93–110
[25] C. J. Stone, “Optimal global rates of convergence for nonparametric regression”, Ann. Statist., 10:4 (1982), 1040–1053 | DOI | MR | Zbl
[26] M. J. Wainwright, High-dimensional statistics. A non-asymptotic viewpoint, Camb. Ser. Stat. Probab. Math., 48, Cambridge Univ. Press, Cambridge, 2019, xvii+552 pp. | DOI | MR | Zbl
[27] Leslie Ying, Yi Ming Zou, D. P. Klemer, Jiun-Jie Wang, “Determination of fiber orientation in MRI diffusion tensor imaging based on higher-order tensor decomposition”, Proceedings of the 29th annual international conference of the IEEE engineering in medicine and biology society (Lyon, 2007), IEEE, 2007, 2065–2068 | DOI
[28] D. C. Zhu, S. Majumdar, “Integration of resting-state FMRI and diffusion-weighted MRI connectivity analyses of the human brain: limitations and improvement”, J. Neuroimaging, 24:2 (2014), 176–186 | DOI
[29] D. C. Zhu, S. Majumdar, I. O. Korolev, K. L. Berger, A. C. Bozoki, “Alzheimer's disease and amnestic mild cognitive impairment weaken connections within the default mode network: a multi-modal imaging study”, J. Alzheimer's Dis., 34:4 (2013), 969–984 | DOI