Moment asymptotics of particle numbers at vertices for a supercritical branching random walk on a periodic graph
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 277-300

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a continuous-time supercritical symmetric branching random walk on a multidimensional graph with periodic particle generation sources. A logarithmic asymptotic formula is obtained for the moments of population sizes of particles at each vertex of the graph as ${t\to\infty}$.
Keywords: branching random walk
Mots-clés : periodic perturbation, evolution equation.
@article{TVP_2023_68_2_a3,
     author = {M. V. Platonova and K. S. Ryadovkin},
     title = {Moment asymptotics of particle numbers at vertices for a supercritical branching random walk on a periodic graph},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {277--300},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a3/}
}
TY  - JOUR
AU  - M. V. Platonova
AU  - K. S. Ryadovkin
TI  - Moment asymptotics of particle numbers at vertices for a supercritical branching random walk on a periodic graph
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 277
EP  - 300
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a3/
LA  - ru
ID  - TVP_2023_68_2_a3
ER  - 
%0 Journal Article
%A M. V. Platonova
%A K. S. Ryadovkin
%T Moment asymptotics of particle numbers at vertices for a supercritical branching random walk on a periodic graph
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 277-300
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a3/
%G ru
%F TVP_2023_68_2_a3
M. V. Platonova; K. S. Ryadovkin. Moment asymptotics of particle numbers at vertices for a supercritical branching random walk on a periodic graph. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 277-300. http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a3/