Mots-clés : periodic perturbation, evolution equation.
@article{TVP_2023_68_2_a3,
author = {M. V. Platonova and K. S. Ryadovkin},
title = {Moment asymptotics of particle numbers at vertices for a supercritical branching random walk on a periodic graph},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {277--300},
year = {2023},
volume = {68},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a3/}
}
TY - JOUR AU - M. V. Platonova AU - K. S. Ryadovkin TI - Moment asymptotics of particle numbers at vertices for a supercritical branching random walk on a periodic graph JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2023 SP - 277 EP - 300 VL - 68 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a3/ LA - ru ID - TVP_2023_68_2_a3 ER -
%0 Journal Article %A M. V. Platonova %A K. S. Ryadovkin %T Moment asymptotics of particle numbers at vertices for a supercritical branching random walk on a periodic graph %J Teoriâ veroâtnostej i ee primeneniâ %D 2023 %P 277-300 %V 68 %N 2 %U http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a3/ %G ru %F TVP_2023_68_2_a3
M. V. Platonova; K. S. Ryadovkin. Moment asymptotics of particle numbers at vertices for a supercritical branching random walk on a periodic graph. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 277-300. http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a3/
[1] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Izd-vo TsPI pri mekh.-matem. f-te MGU, M., 2007, 104 pp.
[2] E. B. Yarovaya, “Spectral properties of evolutionary operators in branching random walk models”, Math. Notes, 92:1 (2012), 115–131 | DOI | DOI | MR | Zbl
[3] E. B. Yarovaya, “Branching random walks with several sources”, Math. Popul. Stud., 20:1 (2013), 14–26 | DOI | MR | Zbl
[4] A. A. Aparin, G. A. Popov, E. B. Yarovaya, “On the sojourn time distribution of a random walk at a multidimensional lattice point”, Theory Probab. Appl., 66:4 (2022), 522–536 | DOI | DOI | MR | Zbl
[5] I. I. Khristolyubov, E. B. Yarovaya, “A limit theorem for supercritical random branching walks with branching sources of varying intensity”, Theory Probab. Appl., 64:3 (2019), 365–384 | DOI | DOI | MR | Zbl
[6] Yu. Makarova, D. Han, S. Molchanov, E. Yarovaya, “Branching random walks with immigration. Lyapunov stability”, Markov Process. Related Fields, 25:4 (2019), 683–708 | MR | Zbl
[7] D. Balashova, S. Molchanov, E. Yarovaya, “Structure of the particle population for a branching random walk with a critical reproduction law”, Methodol. Comput. Appl. Probab., 23:1 (2021), 85–102 | DOI | MR | Zbl
[8] D. M. Balashova, “Clustering effect for multitype branching random walk”, Theory Probab. Appl., 67:3 (2022), 352–362 | DOI | DOI | MR | Zbl
[9] M. V. Platonova, K. S. Ryadovkin, “Branching random walks on $\mathbf{Z}^d$ with periodic branching sources”, Theory Probab. Appl., 64:2 (2019), 229–248 | DOI | DOI | MR | Zbl
[10] M. V. Platonova, K. S. Ryadovkin, “On the variance of the particle number of a supercritical branching random walk on periodic graphs”, J. Math. Sci. (N.Y.), 258:6 (2021), 897–911 | DOI | MR | Zbl
[11] I. I. Gikhman, A. V. Skorokhod, Introduction to the theory of random processes, W. B. Saunders Co., Philadelphia, PA–London–Toronto, ON, 1969, xiii+516 pp. | MR | MR | Zbl
[12] M. Reed, B. Simon, Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York–London, 1978, xv+396 pp. | MR | MR | Zbl | Zbl
[13] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977, 368 pp. | MR | Zbl