Hedging problem for the Asian call options with transaction costs
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 253-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we develop asymptotic Asian option hedging methods for the Black–Scholes markets with transaction costs. We first construct classical replication strategies and then, using the Leland approach, propose corresponding modifications for the financial markets with proportional transaction costs. Sufficient conditions are found on the transaction costs implying the asymptotic hedging for the constructed strategies. The pricing problem is also considered. Three cases are studied: the case where the option price is the same as for the hedging problem without transaction costs, the case of increasing volatility, and the case where the option price equals the option price of the “buy and hold” strategy for European call options.
Keywords: Black–Scholes model, Asian options, hedging problem, transaction cost market, asymptotic hedging, Leland strategy, option pricing.
@article{TVP_2023_68_2_a2,
     author = {A. A. Murzintseva and S. M. Pergamenshchikov and E. A. Pchelintsev},
     title = {Hedging problem for the {Asian} call options with transaction costs},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {253--276},
     year = {2023},
     volume = {68},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a2/}
}
TY  - JOUR
AU  - A. A. Murzintseva
AU  - S. M. Pergamenshchikov
AU  - E. A. Pchelintsev
TI  - Hedging problem for the Asian call options with transaction costs
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 253
EP  - 276
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a2/
LA  - ru
ID  - TVP_2023_68_2_a2
ER  - 
%0 Journal Article
%A A. A. Murzintseva
%A S. M. Pergamenshchikov
%A E. A. Pchelintsev
%T Hedging problem for the Asian call options with transaction costs
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 253-276
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a2/
%G ru
%F TVP_2023_68_2_a2
A. A. Murzintseva; S. M. Pergamenshchikov; E. A. Pchelintsev. Hedging problem for the Asian call options with transaction costs. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 253-276. http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a2/

[1] H. Albrecher, M. Predota, “On Asian option pricing for NIG Lévy processes”, J. Comput. Appl. Math., 172:1 (2004), 153–168 | DOI | MR | Zbl

[2] T. Björk, Arbitrage theory in continuous time, Oxford Univ. Press, Oxford, 1998, 312 pp. | DOI | Zbl

[3] F. Black, M. Scholes, “The pricing of options and corporate liabilities”, J. Polit. Econ., 81:3 (1973), 637–654 | DOI | MR | Zbl

[4] J. M. C. Clark, “The representation of functionals of Brownian motion by stochastic integrals”, Ann. Math. Statist., 41:4 (1970), 1282–1295 | DOI | MR | Zbl

[5] R. M. Dudley, Real analysis and probability, Cambridge Stud. Adv. Math., 74, 2nd ed., Cambridge Univ. Press, Cambridge, 2002, x+555 pp. | DOI | MR | Zbl

[6] D. Dufresne, “Bessel processes and Asian options”, Numerical methods in finance, GERAD 25th Anniv. Ser., 9, Springer, New York, 2005, 35–57 | DOI | MR | Zbl

[7] E. Eberlein, A. Papapantoleon, A. N. Shiryaev, “On the duality principle in option pricing: semimartingale setting”, Finance Stoch., 12:2 (2008), 265–292 | DOI | MR | Zbl

[8] G. Fusai, A. Meucci, “Pricing discretely monitored Asian options under Lévy processes”, J. Bank. Financ., 32:10 (2008), 2076–2088 | DOI

[9] H. Geman, M. Yor, “Bessel processes, Asian options, and perpetuities”, Math. Finance, 3:4 (1993), 349–375 | DOI | Zbl

[10] M. Jacques, “On the hedging portfolio of Asian options”, Astin Bull., 26:2 (1996), 165–183 | DOI

[11] Yu. Kabanov, S. Pergamenshchikov, “In the insurance business risky investments are dangerous: the case of negative risk sums”, Finance Stoch., 20:2 (2016), 355–379 | DOI | MR | Zbl

[12] Yu. Kabanov, M. Safarian, Markets with transaction costs. Mathematical theory, Springer Finance, Springer-Verlag, Berlin, 2009, xiv+294 pp. | DOI | MR | Zbl

[13] H. E. Leland, “Option pricing and replication with transactions costs”, J. Finance, 40:5 (1985), 1283–1301 | DOI

[14] E. Lepinette, “Modified Leland's strategy for a constant transaction costs rate”, Math. Finance, 22:4 (2012), 741–752 | DOI | MR | Zbl

[15] E. Lépinette, T. Tran, “Approximate hedging in a local volatility model with proportional transaction costs”, Appl. Math. Finance, 21:4 (2014), 313–341 | DOI | MR | Zbl

[16] K. Lott, Ein Verfahren zur Replication von Optionen unter Transaktionkosten in stetiger Zeit, Dissertation, Inst. Math. Datenverarbeitung, Univ. Bundeswehr, München, 1993

[17] Thai Huu Nguyen, S. Pergamenshchikov, “Approximate hedging problem with transaction costs in stochastic volatility markets”, Math. Finance, 27:3 (2017), 832–865 | DOI | MR | Zbl

[18] T. Nguyen, S. Pergamenshchikov, “Approximate hedging with constant proportional transaction costs in financial markets with jumps”, Theory Probab. Appl., 65:2 (2020), 224–248 | DOI | DOI | MR | Zbl

[19] S. Pergamenshchikov, “Limit theorem for Leland's strategy”, Ann. Appl. Probab., 13:3 (2003), 1099–1118 | DOI | MR | Zbl

[20] A. A. Shishkova, “Raschet aziatskikh optsionov dlya modeli Bleka–Shoulsa”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2018, no. 51, 48–63 | DOI | MR | Zbl

[21] A. A. Shishkova, “The hedging strategy for Asian option”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2018, no. 56, 29–41 | DOI | MR | Zbl

[22] S. E. Shreve, J. Večeř, “Options on a traded account: vacation calls, vacation puts and passport options”, Finance Stoch., 4:3 (2000), 255–274 | DOI | MR | Zbl

[23] J. Vecer, “A new PDE approach for pricing arithmetic average Asian options”, J. Comput. Finance, 4:4 (2001), 105–113 | DOI

[24] J. Večeř, Mingxin Xu, “Pricing Asian options in a semimartingale model”, Quant. Finance, 4:2 (2004), 170–175 | DOI | MR | Zbl