Mots-clés : sub-Gamma concentration.
@article{TVP_2023_68_2_a10,
author = {M. Skorski},
title = {On sub-gaussian concentration of missing mass},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {393--400},
year = {2023},
volume = {68},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a10/}
}
M. Skorski. On sub-gaussian concentration of missing mass. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 393-400. http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a10/
[1] I. J. Good, “The population frequencies of species and the estimation of population parameters”, Biometrika, 40:3-4 (1953), 237–264 | DOI | MR | Zbl
[2] I. J. Good, “Turing's anticipation of empirical Bayes in connection with the cryptanalysis of the naval Enigma”, J. Statist. Comput. Simulation, 66:2 (2000), 101–111 | DOI | MR | Zbl
[3] H. E. Robbins, “Estimating the total probability of the unobserved outcomes of an experiment”, Ann. Math. Statist., 39:1 (1968), 256–257 | DOI | MR | Zbl
[4] Tsung-Jen Shen, Anne Chao, Chih-Feng Lin, “Predicting the number of new species in further taxonomic sampling”, Ecology, 84:3 (2003), 798–804 | DOI
[5] Anne Chao, Tsung-Jen Shen, “Nonparametric estimation of Shannon's index of diversity when there are unseen species in sample”, Environ. Ecol. Stat., 10:4 (2003), 429–443 | DOI | MR
[6] Anne Chao, Y. T. Wang, Lou Jost, “Entropy and the species accumulation curve: a novel entropy estimator via discovery rates of new species”, Methods Ecol. Evol., 4:11 (2013), 1091–1100 | DOI
[7] Anne Chao, R. K. Colwell, Chun-Huo Chiu, D. Townsend, “Seen once or more than once: applying Good–Turing theory to estimate species richness using only unique observations and a species list”, Methods Ecol. Evol., 8:10 (2017), 1221–1232 | DOI
[8] B. Efron, R. Thisted, “Estimating the number of unseen species: How many words did Shakespeare know?”, Biometrika, 63:3 (1976), 435–447 | DOI | MR | Zbl
[9] D. R. McNeil, “Estimating an author's vocabulary”, J. Amer. Statist. Assoc., 68:341 (1973), 92–96 | DOI | MR
[10] W. A. Gale, G. Sampson, “Good-turing frequency estimation without tears”, J. Quant. Linguist., 2:3 (1995), 217–237 | DOI
[11] N. Myrberg Burström, “A tale of buried treasure, some good estimations, and golden unicorns: the numismatic connections of Alan Turing”, Myntstudier: Festskrift till Kenneth Jonsson, Svenska Numismatiska Föreningen, Stockholm, 2015, 226–230
[12] C. Budianu, Lang Tong, “Estimation of the number of operating sensors in sensor network”, The thrity-seventh Asilomar conference on signals, systems computers (Pacific Grove, CA, 2003), v. 2, IEEE, 2003, 1728–1732 | DOI
[13] C. Budianu, Lang Tong, “Good-turing estimation of the number of operating sensors: a large deviations analysis”, 2004 IEEE international conference on acoustics, speech, and signal processing (Montreal, QC, 2004), v. 2, IEEE, 2004, ii-1029 | DOI
[14] V. Q. Vu, Bin Yu, R. E. Kass, “Coverage-adjusted entropy estimation”, Stat. Med., 26:21 (2007), 4039–4060 | DOI | MR
[15] Zhiyi Zhang, “Entropy estimation in Turing's perspective”, Neural Comput., 24:5 (2012), 1368–1389 | DOI | MR | Zbl
[16] Chang Xuan Mao, B. G. Lindsay, “A Poisson model for the coverage problem with a genomic application”, Biometrika, 89:3 (2002), 669–682 | DOI | MR | Zbl
[17] P. I. Koukos, N. M. Glykos, “On the application of good-turing statistics to quantify convergence of biomolecular simulations”, J. Chem. Inf. Model., 54:1 (2014), 209–217 | DOI
[18] D. McAllester, L. Ortiz, “Concentration inequalities for the missing mass and for histogram rule error”, J. Mach. Learn. Res., 4:5 (2004), 895–911 | DOI | MR | Zbl
[19] D. Berend, A. Kontorovich, “On the concentration of the missing mass”, Electron. Commun. Probab., 18 (2013), 3, 7 pp. | DOI | MR | Zbl
[20] A. Ben-Hamou, S. Boucheron, M. I. Ohannessian, “Concentration inequalities in the infinite urn scheme for occupancy counts and the missing mass, with applications”, Bernoulli, 23:1 (2017), 249–287 | DOI | MR | Zbl
[21] D. A. McAllester, R. E. Schapire, “On the convergence rate of good-turing estimators”, COLT {'}00: Proceedings of the thirteenth annual conference on computational learning theory, 2000, 1–6
[22] A. Maurer, “Thermodynamics and concentration”, Bernoulli, 18:2 (2012), 434–454 | DOI | MR | Zbl
[23] M. Raginsky, I. Sason, “Concentration of measure inequalities in information theory, communications and coding”, Found. Trends Commun. Inf. Theory, 10:1-2 (2013), 1–246 ; (2015 (v1 – 2012)), 180 pp., arXiv: 1212.4663 | DOI | Zbl
[24] S. N. Bernshtein, Teoriya veroyatnostei, 4-e izd., Gostekhizdat, M.–L., 1946, 556 pp. | Zbl
[25] C. C. Craig, “On the Tchebychef inequality of Bernstein”, Ann. Math. Statist., 4:2 (1933), 94–102 | DOI | Zbl
[26] S. Boucheron, G. Lugosi, P. Massart, Concentration inequalities. A nonasymptotic theory of independence, Oxford Univ. Press, Oxford, 2013, x+481 pp. | DOI | MR | Zbl
[27] A. Khursheed, K. M. Lai Saxena, “Positive dependence in multivariate distributions”, Comm. Statist. A–Theory Methods, 10:12 (1981), 1183–1196 | DOI | MR | Zbl
[28] K. Joag-Dev, F. Proschan, “Negative association of random variables, with applications”, Ann. Statist., 11:1 (1983), 286–295 | DOI | MR | Zbl
[29] D. P. Dubhashi, D. Ranjan, Balls and bins: a study in negative dependence, BRICS Report Series, 3, no. 25, BRICS, Dep. of Comput. Sci. Univ. of Aarhus, 1996, 27 pp. | DOI
[30] Qi-Man Shao, “A comparison theorem on moment inequalities between negatively associated and independent random variables”, J. Theoret. Probab., 13:2 (2000), 343–356 | DOI | MR | Zbl
[31] M. Florenzano, Cuong Le Van, Finite dimensional convexity and optimization, In cooperation with P. Gourdel, Stud. Econom. Theory, 13, Springer-Verlag, Berlin, 2001, xii+154 pp. | DOI | MR | Zbl