@article{TVP_2023_68_2_a1,
author = {Yu. Yu. Linke},
title = {Towards insensitivity of {Nadaraya{\textendash}Watson} estimators with respect to design correlation},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {236--252},
year = {2023},
volume = {68},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a1/}
}
Yu. Yu. Linke. Towards insensitivity of Nadaraya–Watson estimators with respect to design correlation. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 236-252. http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a1/
[1] J. Fan, I. Gijbels, Local polynomial modelling and its applications, Monogr. Statist. Appl. Probab., 66, Chapman Hall, London, 1996, xvi+341 pp. | DOI | MR | Zbl
[2] Jianqing Fan, Qiwei Yao, Nonlinear time series. Nonparametric and parametric methods, Springer Ser. Statist., Springer-Verlag, New York, 2003, xx+551 pp. | DOI | MR | Zbl
[3] L. Györfi, M. Kohler, A. Krzyżak, H. Walk, A distribution-free theory of nonparametric regression, Springer Ser. Statist., Springer-Verlag, New York, 2002, xvi+647 pp. | DOI | MR | Zbl
[4] W. Härdle, Applied nonparametric regression, Econom. Soc. Monogr., 19, Cambridge Univ. Press, Cambridge, 1990, xvi+333 pp. | DOI | MR | MR | Zbl | Zbl
[5] C. Loader, Local regression and likelihood, Statist. Comput., Springer-Verlag, New York, 1999, xiv+290 pp. | DOI | MR | Zbl
[6] H.-G. Müller, Nonparametric regression analysis of longitudinal data, Lecture Notes in Statist., 46, Springer-Verlag, Berlin, 1988, vi+199 pp. | DOI | MR | Zbl
[7] M. P. Wand, M. C. Jones, Kernel smoothing, Monogr. Statist. Appl. Probab., 60, Chapman and Hall, Ltd., London, 1995, xii+212 pp. | MR | Zbl
[8] L. P. Devroye, “The uniform convergence of the Nadaraya–Watson regression function estimate”, Canad. J. Statist., 6:2 (1979), 179–191 | DOI | MR | Zbl
[9] W. Härdle, S. Luckhaus, “Uniform consistency of a class of regression function estimators”, Ann. Statist., 12:2 (1984), 612–623 | DOI | MR | Zbl
[10] C. K. Chu, Wen-Shuenn Deng, “An interpolation method for adapting to sparse design in multivariate nonparametric regression”, J. Statist. Plann. Inference, 116:1 (2003), 91–111 | DOI | MR | Zbl
[11] O. B. Linton, D. T. Jacho-Chávez, “On internally corrected and symmetrized kernel estimators for nonparametric regression”, TEST, 19:1 (2010), 166–186 | DOI | MR | Zbl
[12] R. Kulik, P. Lorek, “Some results on random design regression with long memory errors and predictors”, J. Statist. Plann. Inference, 141:1 (2011), 508–523 | DOI | MR | Zbl
[13] Jia Shen, Yuan Xie, “Strong consistency of the internal estimator of nonparametric regression with dependent data”, Stat. Probab. Lett., 83:8 (2013), 1915–1925 | DOI | MR | Zbl
[14] Xiaoqin Li, Wenzhi Yang, Shuhe Hu, “Uniform convergence of estimator for nonparametric regression with dependent data”, J. Inequal. Appl., 2016 (2016), 142, 12 pp. | DOI | MR | Zbl
[15] Seok Young Hong, O. B. Linton, “Asymptotic properties of a Nadaraya–Watson type estimator for regression functions of infinite order”, SSRN Electronic J., 2016
[16] Jiti Gao, Shin Kanaya, Degui Li, D. Tjostheim, “Uniform consistency for nonparametric estimators in null recurrent time series”, Econometric Theory, 31:5 (2015), 911–952 | DOI | MR | Zbl
[17] Qiying Wang, Nigel Chan, “Uniform convergence rates for a class of martingales with application in non-linear cointegrating regression”, Bernoulli, 20:1 (2014), 207–230 | DOI | MR | Zbl
[18] Nigel Chan, Qiying Wang, “Uniform convergence for nonparametric estimators with nonstationary data”, Econometric Theory, 30:5 (2014), 1110–1133 | DOI | MR | Zbl
[19] O. Linton, Qiying Wang, “Nonparametric transformation regression with nonstationary data”, Econometric Theory, 32:1 (2016), 1–29 | DOI | MR | Zbl
[20] Qiying Wang, P. C. B. Phillips, “Structural nonparametric cointegrating regression”, Econometrica, 77:6 (2009), 1901–1948 | DOI | MR | Zbl
[21] H. A. Karlsen, T. Myklebust, D. Tjøstheim, “Nonparametric estimation in a nonlinear cointegration type model”, Ann. Statist., 35:1 (2007), 252–299 | DOI | MR | Zbl
[22] Jia Chen, Jiti Gao, Degui Li, “Estimation in semi-parametric regression with non-stationary regressors”, Bernoulli, 18:2 (2012), 678–702 | DOI | MR | Zbl
[23] J. Beran, Yuanhua Feng, “Local polynomial estimation with a FARIMA-GARCH error process”, Bernoulli, 7:5 (2001), 733–750 | DOI | MR | Zbl
[24] D. Benelmadani, K. Benhenni, S. Louhichi, “Trapezoidal rule and sampling designs for the nonparametric estimation of the regression function in models with correlated errors”, Statistics, 54:1 (2020), 59–96 | DOI | MR | Zbl
[25] Xufei Tang, Mengmei Xi, Yi Wu, Xuejun Wang, “Asymptotic normality of a wavelet estimator for asymptotically negatively associated errors”, Statist. Probab. Lett., 140 (2018), 191–201 | DOI | MR | Zbl
[26] Wentao Gu, G. G. Roussas, L. T. Tran, “On the convergence rate of fixed design regression estimators for negatively associated random variables”, Statist. Probab. Lett., 77:12 (2007), 1214–1224 | DOI | MR | Zbl
[27] J. S. Wu, C. K. Chu, “Nonparametric estimation of a regression function with dependent observations”, Stochastic Process. Appl., 50:1 (1994), 149–160 | DOI | MR | Zbl
[28] K. Benhenni, S. Hedli-Griche, M. Rachdi, “Estimation of the regression operator from functional fixed-design with correlated errors”, J. Multivariate Anal., 101:2 (2010), 476–490 | DOI | MR | Zbl
[29] D. A. Ioannides, “Consistent nonparametric regression: some generalizations in the fixed design case”, J. Nonparametr. Statist., 2:3 (1993), 203–213 | DOI | MR | Zbl
[30] H.-G. Müller, K. A. Prewitt, “Multiparameter bandwidth processes and adaptive surface smoothing”, J. Multivariate Anal., 47:1 (1993), 1–21 | DOI | MR | Zbl
[31] I. A. Ahmad, Pi-Erh Lin, “Fitting a multiple regression function”, J. Statist. Plann. Inference, 9:2 (1984), 163–176 | DOI | MR | Zbl
[32] A. A. Georgiev, “Nonparametric multiple function fitting”, Statist. Probab. Lett., 10:3 (1990), 203–211 | DOI | MR | Zbl
[33] A. A. Georgiev, “Asymptotic properties of the multivariate Nadaraya–Watson regression function estimate: the fixed design case”, Statist. Probab. Lett., 7:1 (1988), 35–40 | DOI | MR | Zbl
[34] Han-Ying Liang, Bing-Yi Jing, “Asymptotic properties for estimates of nonparametric regression models based on negatively associated sequences”, J. Multivariate Anal., 95:2 (2005), 227–245 | DOI | MR | Zbl
[35] C.-K. Chu, J. S. Marron, “Choosing a kernel regression estimator”, Statist. Sci., 6:4 (1991), 404–436 | DOI | MR | Zbl
[36] M. C. Jones, S. J. Davies, B. U. Park, “Versions of kernel-type regression estimators”, J. Amer. Statist. Assoc., 89:427 (1994), 825–832 | DOI | MR | Zbl
[37] É. A. Nadaraya, “Remarks on non-parametric estimates for density functions and regression curves”, Theory Probab. Appl., 15:1 (1970), 134–137 | DOI | MR | Zbl
[38] N. N. Chentsov, “Weak convergence of stochastic processes whose trajectories have no discontinuities of the second kind and the “heuristic” approach to the Kolmogorov–Smirnov tests”, Theory Probab. Appl., 1:1 (1956), 140–144 | DOI | MR
[39] Yu. Linke, I. Borisov, “Insensitivity of Nadaraya–Watson estimators to design correlation”, Comm. Statist. Theory Methods, 51:19 (2022), 6909–6918 | DOI | MR | Zbl
[40] I. S. Borisov, Yu. Yu. Linke, P. S. Ruzankin, “Universal weighted kernel-type estimators for some class of regression models”, Metrika, 84:2 (2021), 141–166 | DOI | MR | Zbl
[41] Yu. Linke, I. Borisov, P. Ruzankin, V. Kutsenko, E. Yarovaya, S. Shalnova, “Universal local linear kernel estimators in nonparametric regression”, Mathematics, 10:15 (2022), 2693, 28 pp. | DOI
[42] Yu. Linke, “Asymptotic properties of one-step $M$-estimators”, Comm. Statist. Theory Methods, 48:16 (2019), 4096–4118 | DOI | MR | Zbl
[43] Yu. Yu. Linke, I. S. Borisov, “Constructing explicit estimators in nonlinear regression problems”, Theory Probab. Appl., 63:1 (2018), 22–44 | DOI | DOI | MR | Zbl
[44] Yu. Yu. Linke, I. S. Borisov, “Constructing initial estimators in one-step estimation procedures of nonlinear regression”, Statist. Probab. Lett., 120 (2017), 87–94 | DOI | MR | Zbl
[45] E. Rio, “Moment inequalities for sums of dependent random variables under projective conditions”, J. Theoret. Probab., 22:1 (2009), 146–163 | DOI | MR | Zbl