On a rate of convergence for the arcsine law
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 209-235 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the rate of convergence of the distribution of the normalized sojourn time of a classical random walk above some nonnegative level to its limit law with unboundedly growing observation time.
Keywords: random walk, sojourn time of random walk in a domain
Mots-clés : arcsine law.
@article{TVP_2023_68_2_a0,
     author = {I. S. Borisov and E. I. Shefer},
     title = {On a rate of convergence for the arcsine law},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {209--235},
     year = {2023},
     volume = {68},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a0/}
}
TY  - JOUR
AU  - I. S. Borisov
AU  - E. I. Shefer
TI  - On a rate of convergence for the arcsine law
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 209
EP  - 235
VL  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a0/
LA  - ru
ID  - TVP_2023_68_2_a0
ER  - 
%0 Journal Article
%A I. S. Borisov
%A E. I. Shefer
%T On a rate of convergence for the arcsine law
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 209-235
%V 68
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a0/
%G ru
%F TVP_2023_68_2_a0
I. S. Borisov; E. I. Shefer. On a rate of convergence for the arcsine law. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 209-235. http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a0/

[1] P. Lévy, “Sur certains processus stochastiques homogènes”, Compositio Math., 7 (1939), 283–339 | MR | Zbl

[2] Kai Lai Chung, W. Feller, “On fluctuations in coin-tossing”, Proc. Nat. Acad. Sci. U.S.A., 35:10 (1949), 605–608 | DOI | MR | Zbl

[3] P. Erdös, M. Kac, “On the number of positive sums of independent random variables”, Bull. Amer. Math. Soc., 53:10 (1947), 1011–1020 | DOI | MR | Zbl

[4] E. Sparre Andersen, “On the fuctuations of sums of random variables. II”, Math. Scand., 2 (1954), 195–223 | MR | Zbl

[5] I. I. Gikhman, A. V. Skorokhod, Introduction to the theory of random processes, W. B. Saunders Co., Philadelphia, PA–London–Toronto, ON, 1969, xiii+516 pp. | MR | MR | Zbl

[6] A. N. Borodin, P. Salminen, Handbook of Brownian motion — facts and formulae, Probab. Appl., 2nd ed., Birkhäuser Verlag, 2002, xvi+672 pp. | DOI | MR | Zbl

[7] M. Yor, “The distribution of Brownian quantiles”, J. Appl. Probab., 32:2 (1995), 405–416 | DOI | MR | Zbl

[8] P. E. Baskakova, A. N. Borodin, “Tables of the distributions of the functionals of Brownian motion”, J. Math. Sci. (N.Y.), 75:5 (1995), 1873–1883 | DOI | MR | Zbl

[9] I. S. Borisov, E. I. Shefer, “Asimptotika raspredeleniya vremeni prebyvaniya sluchainogo bluzhdaniya v oblasti umerenno bolshikh uklonenii”, Matem. tr., 23:2 (2020), 50–69 | DOI

[10] Yu. V. Prokhorov, “Convergence of random processes and limit theorems in probability theory”, Theory Probab. Appl., 1:2 (1956), 157–214 | DOI | MR | Zbl

[11] P. Major, “The approximation of partial sums of independent RV's”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 35:3 (1976), 213–220 | DOI | MR | Zbl

[12] J. Komlós, P. Major, G. Tusnády, “An approximation of partial sums of independent RV'-s, and the sample DF. I”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 32:1-2 (1975), 111–133 | DOI | MR | Zbl

[13] J. Komlós, P. Major, G. Tusnády, “An approximation of partial sums of independent RV's, and the sample DF. II”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 34:1 (1976), 33–58 | DOI | MR | Zbl

[14] P. Major, “Approximation of partial sums of i.i.d.r.v.s when the summand have only two moments”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 35:3 (1976), 221–229 | DOI | MR | Zbl

[15] I. S. Borisov, “On the rate of convergence in Donsker–Prohorov invariance principle”, Theory Probab. Appl., 28:2 (1984), 388–393 | DOI | MR | Zbl

[16] A. N. Borodin, I. A. Ibragimov, “Limit theorems for functionals of random walks”, Proc. Steklov Inst. Math., 195 (1995), 1–259 | MR | Zbl

[17] W. Feller, An introduction to probability theory and its applications, v. 1, 3rd ed., John Wiley Sons, Inc., New York–London–Sydney, 1968, xviii+509 pp. | MR | MR | Zbl | Zbl

[18] Ch. Döbler, A rate of convergence for the arcsine law by Stein's method, 2012, 11 pp., arXiv: 1207.2401

[19] L. Goldstein, G. Reinert, “Stein's method for the beta distribution and the Pólya–Eggenberger urn”, J. Appl. Probab., 50:4 (2013), 1187–1205 | DOI | MR | Zbl

[20] A. N. Borodin, “Brownian local time”, Russian Math. Surveys, 44:2 (1989), 1–51 | DOI | MR | Zbl

[21] F. Spitzer, Principles of random walk, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, NJ–Toronto–London, 1964, xi+406 pp. | MR | Zbl | Zbl