On a rate of convergence for the arcsine law
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 209-235
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the rate of convergence of the distribution of the normalized sojourn
time of a classical random walk above some nonnegative level to its limit law
with unboundedly growing observation time.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
random walk, sojourn time of random walk in a domain
Mots-clés : arcsine law.
                    
                  
                
                
                Mots-clés : arcsine law.
@article{TVP_2023_68_2_a0,
     author = {I. S. Borisov and E. I. Shefer},
     title = {On a rate of convergence for the arcsine law},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {209--235},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a0/}
}
                      
                      
                    I. S. Borisov; E. I. Shefer. On a rate of convergence for the arcsine law. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 209-235. http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a0/
