On a rate of convergence for the arcsine law
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 209-235

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the rate of convergence of the distribution of the normalized sojourn time of a classical random walk above some nonnegative level to its limit law with unboundedly growing observation time.
Keywords: random walk, sojourn time of random walk in a domain
Mots-clés : arcsine law.
@article{TVP_2023_68_2_a0,
     author = {I. S. Borisov and E. I. Shefer},
     title = {On a rate of convergence for the arcsine law},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {209--235},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a0/}
}
TY  - JOUR
AU  - I. S. Borisov
AU  - E. I. Shefer
TI  - On a rate of convergence for the arcsine law
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 209
EP  - 235
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a0/
LA  - ru
ID  - TVP_2023_68_2_a0
ER  - 
%0 Journal Article
%A I. S. Borisov
%A E. I. Shefer
%T On a rate of convergence for the arcsine law
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 209-235
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a0/
%G ru
%F TVP_2023_68_2_a0
I. S. Borisov; E. I. Shefer. On a rate of convergence for the arcsine law. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 2, pp. 209-235. http://geodesic.mathdoc.fr/item/TVP_2023_68_2_a0/