@article{TVP_2023_68_1_a8,
author = {A. B. Piunovskiy},
title = {Turnpikes in finite {Markov} decision processes and random walk},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {147--176},
year = {2023},
volume = {68},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a8/}
}
A. B. Piunovskiy. Turnpikes in finite Markov decision processes and random walk. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 147-176. http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a8/
[1] Kai Chen, S. M. Ross, “An adaptive stochastic knapsack problem”, European J. Oper. Res., 239:3 (2014), 625–635 | DOI | MR | Zbl
[2] B. C. Dean, M. X. Goemans, J. Vondrák, “Approximating the stochastic knapsack problem: the benefit of adaptivity”, Math. Oper. Res., 33:4 (2008), 945–964 | DOI | MR | Zbl
[3] E. V. Denardo, U. G. Rothblum, “A turnpike theorem for a risk-sensitive Markov decision process with stopping”, SIAM J. Control Optim., 45:2 (2006), 414–431 | DOI | MR | Zbl
[4] R. Dorfman, P. A. Samuelson, R. M. Solow, Linear programming and economic analysis, McGraw-Hill Book Co., Inc., New York–Toronto–London, 1958, ix+525 pp. | MR | Zbl
[5] E. B. Dynkin, A. A. Yushkevich, Controlled Markov processes, Grundlehren Math. Wiss., 235, Springer-Verlag, Berlin–New York, 1979, xvii+289 pp. | MR | MR | Zbl
[6] A. Federgruen, P. J. Schweitzer, “Discounted and undiscounted value-iteration in Markov decision problems: a survey”, Dynamic programming and its applications (Univ. British Columbia, Vancouver, BC, 1977), Academic Press, New York–London, 1978, 23–52 | DOI | MR | Zbl
[7] O. Hernández-Lerma, J. B. Lasserre, “A forecast horizon and a stopping rule for general Markov decision processes”, J. Math. Anal. Appl., 132:2 (1988), 388–400 | DOI | MR | Zbl
[8] K. Hinderer, K.-H. Waldmann, “Algorithms for countable state Markov decision models with an absorbing set”, SIAM J. Control Optim., 43:6 (2005), 2109–2131 | DOI | MR | Zbl
[9] R. A. Howard, Dynamic programming and Markov processes, The Technology Press of M.I.T., Cambridge, MA; John Wiley Sons, Inc., New York–London, 1960, viii+136 pp. | MR | MR | Zbl | Zbl
[10] T. Iida, M. Mori, “Markov decision processes with random horizon”, J. Oper. Res. Soc. Japan, 39:4 (1996), 592–603 | DOI | MR | Zbl
[11] M. Jacobson, N. Shimkin, A. Shwartz, “Markov decision processes with slow scale periodic decisions”, Math. Oper. Res., 28:4 (2003), 777–800 | DOI | MR | Zbl
[12] L. C. M. Kallenberg, Markov decision processes, Lecture notes, Univ. of Leiden, 2010, x+434 pp. https://www.math.leidenuniv.nl/~spieksma/colleges/LNMB-MDP/Lecture-notes-Kallenberg.pdf
[13] J. G. Kemeny, J. L. Snell, Finite Markov chains, Univ. Ser. Undergrad. Math., Van Nostrand Co., Inc., Princeton, NJ–Toronto–London–New York, 1960, viii+210 pp. | MR | MR | Zbl | Zbl
[14] V. N. Kolokoltsov, “Magistrali i beskonechnye ekstremali v markovskikh protsessakh prinyatiya reshenii”, Matem. zametki, 46:4 (1989), 118–120 | MR | Zbl
[15] M. E. Lewis, A. Paul, “Uniform turnpike theorems for finite Markov decision processes”, Math. Oper. Res., 44:4 (2019), 1145–1160 | DOI | MR | Zbl
[16] T. E. Morton, “Decision horizons in discrete time undiscounted Markov renewal programming”, IEEE Trans. Systems Man Cybernet., SMC-4:4 (1974), 392–394 | DOI | MR | Zbl
[17] A. R. Odoni, “On finding the maximal gain for Markov decision processes”, Operations Res., 17:5 (1969), 857–860 | DOI | MR | Zbl
[18] A. B. Piunovskiy, Optimal control of random sequences in problems with constraints, Math. Appl., 410, Kluwer Acad. Publ., Dordrecht, 1997, xii+345 pp. | DOI | MR | Zbl
[19] A. B. Piunovskiy, Examples in Markov decision processes, Imp. Coll. Press Optim. Ser., 2, Imp. Coll. Press, London, 2013, xiv+293 pp. | DOI | MR | Zbl
[20] A. B. Piunovskiy, “Controlled random walk: conjecture and counter-example”, Modern trends in controlled stochastic processes, v. 3, Emerg. Complex. Comput., 41, Theory and applications, Springer, Cham, 2021, 38–56 | DOI | MR | Zbl
[21] M. L. Puterman, Markov decision processes: discrete stochastic dynamic programming, Wiley Ser. Probab. Math. Statist. Appl. Probab. Statist., John Wiley Sons, Inc., New York, 1994, xx+649 pp. | DOI | MR | Zbl
[22] J. F. Shapiro, “Turnpike planning horizons for a Markovian decision model”, Management Sci., 14:5 (1968), 292–300 | DOI | Zbl
[23] A. J. Zaslavski, Turnpike properties in the calculus of variations and optimal control, Nonconvex Optim. Appl., 80, Springer, New York, 2006, xxii+395 pp. | DOI | MR | Zbl
[24] A. J. Zaslavski, Turnpike theory for the Robinson–Solow–Srinivasan model, Springer Optim. Appl., 166, Springer, Cham, 2020, x+442 pp. | DOI | MR | Zbl