Asymptotic relative efficiency of the Kendall and Spearman correlation statistics
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 133-146

Voir la notice de l'article provenant de la source Math-Net.Ru

A necessary and sufficient condition for Pitman's asymptotic relative efficiency of the Kendall and Spearman correlation statistics for the independence test to be $1$ is given, in terms of certain smoothness and nondegeneracy properties of the model. Corresponding easy-to-use and broadly applicable sufficient conditions are obtained. These conditions hold for most well-known models of dependence.
Keywords: asymptotic relative efficiency, correlation statistics, Kendall's statistic, Spearman's statistic, nonparametric tests, tests of independence, association function, models of dependence.
@article{TVP_2023_68_1_a7,
     author = {I. Pinelis},
     title = {Asymptotic relative efficiency of the {Kendall} and {Spearman} correlation statistics},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {133--146},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a7/}
}
TY  - JOUR
AU  - I. Pinelis
TI  - Asymptotic relative efficiency of the Kendall and Spearman correlation statistics
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 133
EP  - 146
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a7/
LA  - ru
ID  - TVP_2023_68_1_a7
ER  - 
%0 Journal Article
%A I. Pinelis
%T Asymptotic relative efficiency of the Kendall and Spearman correlation statistics
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 133-146
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a7/
%G ru
%F TVP_2023_68_1_a7
I. Pinelis. Asymptotic relative efficiency of the Kendall and Spearman correlation statistics. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 133-146. http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a7/