Asymptotic relative efficiency of the Kendall and Spearman correlation statistics
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 133-146
Voir la notice de l'article provenant de la source Math-Net.Ru
A necessary and sufficient condition for Pitman's asymptotic relative efficiency of the Kendall and Spearman correlation statistics for the independence test to be $1$ is given, in terms of certain smoothness and nondegeneracy properties of the model. Corresponding easy-to-use and broadly applicable sufficient conditions are obtained. These conditions hold for most well-known models of dependence.
Keywords:
asymptotic relative efficiency, correlation statistics, Kendall's statistic, Spearman's statistic, nonparametric tests, tests of independence, association function, models of dependence.
@article{TVP_2023_68_1_a7,
author = {I. Pinelis},
title = {Asymptotic relative efficiency of the {Kendall} and {Spearman} correlation statistics},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {133--146},
publisher = {mathdoc},
volume = {68},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a7/}
}
I. Pinelis. Asymptotic relative efficiency of the Kendall and Spearman correlation statistics. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 133-146. http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a7/