Asymptotic relative efficiency of the Kendall and Spearman correlation statistics
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 133-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A necessary and sufficient condition for Pitman's asymptotic relative efficiency of the Kendall and Spearman correlation statistics for the independence test to be $1$ is given, in terms of certain smoothness and nondegeneracy properties of the model. Corresponding easy-to-use and broadly applicable sufficient conditions are obtained. These conditions hold for most well-known models of dependence.
Keywords: asymptotic relative efficiency, correlation statistics, Kendall's statistic, Spearman's statistic, nonparametric tests, tests of independence, association function, models of dependence.
@article{TVP_2023_68_1_a7,
     author = {I. Pinelis},
     title = {Asymptotic relative efficiency of the {Kendall} and {Spearman} correlation statistics},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {133--146},
     year = {2023},
     volume = {68},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a7/}
}
TY  - JOUR
AU  - I. Pinelis
TI  - Asymptotic relative efficiency of the Kendall and Spearman correlation statistics
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 133
EP  - 146
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a7/
LA  - ru
ID  - TVP_2023_68_1_a7
ER  - 
%0 Journal Article
%A I. Pinelis
%T Asymptotic relative efficiency of the Kendall and Spearman correlation statistics
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 133-146
%V 68
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a7/
%G ru
%F TVP_2023_68_1_a7
I. Pinelis. Asymptotic relative efficiency of the Kendall and Spearman correlation statistics. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 133-146. http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a7/

[1] E. J. G. Pitman, Notes on non-parametric statistical inference, Inst. of Statist. Mimeo Ser. 27, Univ. of N. Carolina, Chapel Hill, 1948, 81 pp. https://repository.lib.ncsu.edu/handle/1840.4/2430

[2] J. Hájek, Z. Šidák, P. K. Sen, Theory of rank tests, Probab. Math. Statist., 2nd ed., Academic Press, Inc., San Diego, CA, 1999, xiv+435 pp. | DOI | MR | Zbl

[3] W. H. Kruskal, “Ordinal measures of association”, J. Amer. Statist. Assoc., 53:284 (1958), 814–861 | DOI | MR | Zbl

[4] Weichao Xu, Yunhe Hou, Y. S. Hung, Yuexian Zou, “A comparative analysis of Spearman's rho and Kendall's tau in normal and contaminated normal models”, Signal Processing, 93 (2013), 261–276 | DOI

[5] R. Molzon, I. Pinelis, Monotonicity properties of the asymptotic relative efficiency between common correlation statistics in the bivariate normal model, 2009, 40 pp., arXiv: 0907.5448

[6] D. J. G. Farlie, “The performance of some correlation coefficients for a general bivariate distribution”, Biometrika, 47:3-4 (1960), 307–323 | DOI | MR | Zbl

[7] I. Pinelis, Asymptotic relative efficiency of the Kendall and Spearman correlation statistics, 2022, 21 pp., arXiv: 2208.01790

[8] G. E. Noether, “On a theorem of Pitman”, Ann. Math. Statist., 26 (1955), 64–68 | DOI | MR | Zbl

[9] R. B. Nelsen, An introduction to copulas, Springer Ser. Statist., 2nd ed., Springer, New York, 2006, xiv+269 pp. | DOI | MR | Zbl

[10] H. Scheffé, “A useful convergence theorem for probability distributions”, Ann. Math. Statistics, 18:3 (1947), 434–438 | DOI | MR | Zbl

[11] R. L. Plackett, “A class of bivariate distributions”, J. Amer. Statist. Assoc., 60:310 (1965), 516–522 | DOI | MR

[12] M. J. Frank, “On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$”, Aequationes Math., 19:2-3 (1979), 194–226 | DOI | MR | Zbl

[13] L. H. Y. Chen, Qi-Man Shao, “Normal approximation for nonlinear statistics using a concentration inequality approach”, Bernoulli, 13:2 (2007), 581–599 | DOI | MR | Zbl