@article{TVP_2023_68_1_a6,
author = {T. Lu and Ch. Ma and F. Wang},
title = {Series expansions of fractional {Brownian} motions and strong local nondeterminism of bifractional {Brownian} motions on balls and spheres},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {106--132},
year = {2023},
volume = {68},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a6/}
}
TY - JOUR AU - T. Lu AU - Ch. Ma AU - F. Wang TI - Series expansions of fractional Brownian motions and strong local nondeterminism of bifractional Brownian motions on balls and spheres JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2023 SP - 106 EP - 132 VL - 68 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a6/ LA - ru ID - TVP_2023_68_1_a6 ER -
%0 Journal Article %A T. Lu %A Ch. Ma %A F. Wang %T Series expansions of fractional Brownian motions and strong local nondeterminism of bifractional Brownian motions on balls and spheres %J Teoriâ veroâtnostej i ee primeneniâ %D 2023 %P 106-132 %V 68 %N 1 %U http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a6/ %G ru %F TVP_2023_68_1_a6
T. Lu; Ch. Ma; F. Wang. Series expansions of fractional Brownian motions and strong local nondeterminism of bifractional Brownian motions on balls and spheres. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 106-132. http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a6/
[1] G. E. Andrews, R. Askey, R. Roy, Special functions, Encyclopedia Math. Appl., 71, Cambridge Univ. Press, Cambridge, 1999, xvi+664 pp. | DOI | MR | Zbl
[2] N. H. Bingham, “Positive definite functions on spheres”, Proc. Cambridge Philos. Soc., 73:1 (1973), 145–156 | DOI | MR | Zbl
[3] N. H. Bingham, A. Mijatović, T. L. Symons, “Brownian manifolds, negative type and geo-temporal covariances”, Commun. Stoch. Anal., 10:4 (2016), 3, 12 pp. | DOI | MR
[4] L. Bos, N. Levenberg, S. Waldron, “Metrics associated to multivariate polynomial inequalities”, Advances in constructive approximation: Vanderbilt 2003 (Nashville, TN, 2003), Mod. Methods Math., Nashboro Press, Brentwood, TN, 2004, 133–147 | MR | Zbl
[5] Dan Cheng, Peng Liu, “Extremes of spherical fractional Brownian motion”, Extremes, 22:3 (2019), 433–457 | DOI | MR | Zbl
[6] P. Chigansky, M. Kleptsyna, “Exact asymptotics in eigenproblems for fractional Brownian covariance operators”, Stochastic Process. Appl., 128:6 (2018), 2007–2059 | DOI | MR
[7] S. Cohen, M. A. Lifshits, “Stationary Gaussian random fields on hyperbolic spaces and on Euclidean spheres”, ESAIM Probab. Stat., 16 (2012), 165–221 | DOI | MR | Zbl
[8] Feng Dai, Yuan Xu, Approximation theory and harmonic analysis on spheres and balls, Springer Monogr. Math., Springer, New York, 2013, xviii+440 pp. | DOI | MR | Zbl
[9] K. Dzhaparidze, H. van Zanten, “A series expansion of fractional Brownian motion”, Probab. Theory Related Fields, 130:1 (2004), 39–55 | DOI | MR | Zbl
[10] K. Dzhaparidze, H. van Zanten, “Optimality of an explicit series expansion of the fractional Brownian sheet”, Statist. Probab. Lett., 71:4 (2005), 295–301 | DOI | MR | Zbl
[11] K. Dzhaparidze, H. van Zanten, P. Zareba, “Representations of fractional Brownian motion using vibrating strings”, Stochastic Process. Appl., 115:12 (2005), 1928–1953 | DOI | MR | Zbl
[12] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007, xlviii+1171 pp. | MR | Zbl
[13] J. Istas, “Karhunen–Loève expansion of spherical fractional Brownian motions”, Statist. Probab. Lett., 76:14 (2006), 1578–1583 | DOI | MR | Zbl
[14] Xiaohong Lan, D. Marinucci, Yimin Xiao, “Strong local nondeterminism and exact modulus of continuity for spherical Gaussian fields”, Stochastic Process. Appl., 128:4 (2018), 1294–1315 | DOI | MR | Zbl
[15] Xiaohong Lan, Yimin Xiao, “Strong local nondeterminism of spherical fractional Brownian motion”, Statist. Probab. Lett., 135 (2018), 44–50 | DOI | MR | Zbl
[16] A. Lang, C. Schwab, “Isotropic Gaussian random fields on the sphere: regularity, fast simulation and stochastic partial differential equations”, Ann. Appl. Probab., 25:6 (2015), 3047–3094 | DOI | MR | Zbl
[17] N. N. Leonenko, M. D. Ruiz-Medina, “Increasing domain asymptotics for the first Minkowski functional of spherical random fields”, Theory Probab. Math. Statist., 97 (2018), 127–149 | DOI | MR | Zbl
[18] N. Leonenko, L. Sakhno, “On spectral representation of tensor random fields on the sphere”, Stoch. Anal. Appl., 30:1 (2012), 44–66 | DOI | MR | Zbl
[19] M. Lifshits, K. Volkova, “Bifractional Brownian motion: existence and border cases”, ESAIM Probab. Stat., 19 (2015), 766–781 | DOI | MR | Zbl
[20] Tianshi Lu, N. Leonenko, Chunsheng Ma, “Series representations of isotropic vector random fields on balls”, Statist. Probab. Lett., 156 (2020), 108583, 7 pp. | DOI | MR | Zbl
[21] Tianshi Lu, Chunsheng Ma, “Isotropic covariance matrix functions on compact two-point homogeneous spaces”, J. Theoret. Probab., 33:3 (2020), 1630–1656 | DOI | MR | Zbl
[22] C. Ma, “The Schoenberg–Lévy kernel and relationships among fractional Brownian motion, bifractional Brownian motion, and others”, Teoriya veroyatn. i ee primen., 57:4 (2012), 744–760 ; Theory Probab. Appl., 57:4 (2013), 619–632 | DOI | Zbl | DOI | MR
[23] Chunsheng Ma, “Multifractional vector Brownian motions, their decompositions, and generalizations”, Stoch. Anal. Appl., 33:3 (2015), 535–548 | DOI | MR | Zbl
[24] Chunsheng Ma, “Isotropic covariance matrix polynomials on spheres”, Stoch. Anal. Appl., 34:4 (2016), 679–706 | DOI | MR | Zbl
[25] Chunsheng Ma, “Time varying isotropic vector random fields on spheres”, J. Theoret. Probab., 30:4 (2017), 1763–1785 | DOI | MR | Zbl
[26] Chunsheng Ma, A. Malyarenko, “Time-varying isotropic vector random fields on compact two-point homogeneous spaces”, J. Theoret. Probab., 33:1 (2020), 319–339 | DOI | MR | Zbl
[27] A. Malyarenko, Invariant random fields on spaces with a group action, Probab. Appl. (N. Y.), Springer, Heidelberg, 2013, xviii+261 pp. | DOI | MR | Zbl
[28] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, eds., NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge Univ. Press, Cambridge, 2010, xvi+951 pp. | MR | Zbl
[29] L. D. Pitt, “Local times for Gaussian vector fields”, Indiana Univ. Math. J., 27:2 (1978), 309–330 | DOI | MR | Zbl
[30] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, 4th ed., Amer. Math. Soc., Providence, RI, 1975, xiii+432 pp. | MR | Zbl | Zbl
[31] M. Talagrand, “Hausdorff measure of trajectories of multiparameter fractional Brownian motion”, Ann. Probab., 23:2 (1995), 767–775 | DOI | MR | Zbl
[32] Fangfang Wang, Chunsheng Ma, “Peakedness and convex ordering for elliptically contoured random fields”, J. Statist. Plann. Inference, 197 (2018), 21–34 | DOI | MR | Zbl
[33] Yimin Xiao, “Strong local nondeterminism and sample path properties of Gaussian random fields”, Asymptotic theory in probability and statistics with applications, Adv. Lect. Math. (ALM), 2, Int. Press, Somerville, MA; Higher Education Press, Beijing, 2008, 136–176 | MR | Zbl
[34] Yimin Xiao, “Recent developments on fractal properties of Gaussian random fields”, Further developments in fractals and related fields, Trends Math., Birkhäuser/Springer, New York, 2013, 255–288 | DOI | MR | Zbl
[35] Yuan Xu, “Positive definite functions on the unit sphere and integrals of Jacobi polynomials”, Proc. Amer. Math. Soc., 146:5 (2018), 2039–2048 | DOI | MR | Zbl
[36] M. I. Yadrenko, Spectral theory of random fields, Optimization Software, Inc., Publications Division, New York, 1983, iii+259 pp. | MR | MR | Zbl | Zbl
[37] A. M. Yaglom, “Second-order homogeneous random fields”, Proceedings of the 4th Berkeley symposium on mathematical statistics and probability, v. 2, Univ. California Press, Berkeley, CA, 1961, 593–622 | MR | Zbl
[38] A. M. Yaglom, Correlation theory of stationary and related random functions, v. 1, Springer Ser. Statist., Springer-Verlag, New York, 1987, xiv+526 pp. | DOI | MR | Zbl