Series expansions of fractional Brownian motions and strong local nondeterminism of bifractional Brownian motions on balls and spheres
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 106-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper provides series expansions for fractional Brownian motions on the unit ball and the unit sphere by means of ultraspherical polynomials and spherical harmonics. It establishes the property of strong local nondeterminism of isotropic Gaussian random fields on the unit sphere and that of fractional and bifractional Brownian motions on the unit ball and the unit sphere.
Keywords: conditionally negative definiteness, distance function on the ball, spherical harmonics, trifractional Brownian motion, ultraspherical polynomial.
@article{TVP_2023_68_1_a6,
     author = {T. Lu and Ch. Ma and F. Wang},
     title = {Series expansions of fractional {Brownian} motions and strong local nondeterminism of bifractional {Brownian} motions on balls and spheres},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {106--132},
     year = {2023},
     volume = {68},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a6/}
}
TY  - JOUR
AU  - T. Lu
AU  - Ch. Ma
AU  - F. Wang
TI  - Series expansions of fractional Brownian motions and strong local nondeterminism of bifractional Brownian motions on balls and spheres
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 106
EP  - 132
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a6/
LA  - ru
ID  - TVP_2023_68_1_a6
ER  - 
%0 Journal Article
%A T. Lu
%A Ch. Ma
%A F. Wang
%T Series expansions of fractional Brownian motions and strong local nondeterminism of bifractional Brownian motions on balls and spheres
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 106-132
%V 68
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a6/
%G ru
%F TVP_2023_68_1_a6
T. Lu; Ch. Ma; F. Wang. Series expansions of fractional Brownian motions and strong local nondeterminism of bifractional Brownian motions on balls and spheres. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 106-132. http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a6/

[1] G. E. Andrews, R. Askey, R. Roy, Special functions, Encyclopedia Math. Appl., 71, Cambridge Univ. Press, Cambridge, 1999, xvi+664 pp. | DOI | MR | Zbl

[2] N. H. Bingham, “Positive definite functions on spheres”, Proc. Cambridge Philos. Soc., 73:1 (1973), 145–156 | DOI | MR | Zbl

[3] N. H. Bingham, A. Mijatović, T. L. Symons, “Brownian manifolds, negative type and geo-temporal covariances”, Commun. Stoch. Anal., 10:4 (2016), 3, 12 pp. | DOI | MR

[4] L. Bos, N. Levenberg, S. Waldron, “Metrics associated to multivariate polynomial inequalities”, Advances in constructive approximation: Vanderbilt 2003 (Nashville, TN, 2003), Mod. Methods Math., Nashboro Press, Brentwood, TN, 2004, 133–147 | MR | Zbl

[5] Dan Cheng, Peng Liu, “Extremes of spherical fractional Brownian motion”, Extremes, 22:3 (2019), 433–457 | DOI | MR | Zbl

[6] P. Chigansky, M. Kleptsyna, “Exact asymptotics in eigenproblems for fractional Brownian covariance operators”, Stochastic Process. Appl., 128:6 (2018), 2007–2059 | DOI | MR

[7] S. Cohen, M. A. Lifshits, “Stationary Gaussian random fields on hyperbolic spaces and on Euclidean spheres”, ESAIM Probab. Stat., 16 (2012), 165–221 | DOI | MR | Zbl

[8] Feng Dai, Yuan Xu, Approximation theory and harmonic analysis on spheres and balls, Springer Monogr. Math., Springer, New York, 2013, xviii+440 pp. | DOI | MR | Zbl

[9] K. Dzhaparidze, H. van Zanten, “A series expansion of fractional Brownian motion”, Probab. Theory Related Fields, 130:1 (2004), 39–55 | DOI | MR | Zbl

[10] K. Dzhaparidze, H. van Zanten, “Optimality of an explicit series expansion of the fractional Brownian sheet”, Statist. Probab. Lett., 71:4 (2005), 295–301 | DOI | MR | Zbl

[11] K. Dzhaparidze, H. van Zanten, P. Zareba, “Representations of fractional Brownian motion using vibrating strings”, Stochastic Process. Appl., 115:12 (2005), 1928–1953 | DOI | MR | Zbl

[12] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007, xlviii+1171 pp. | MR | Zbl

[13] J. Istas, “Karhunen–Loève expansion of spherical fractional Brownian motions”, Statist. Probab. Lett., 76:14 (2006), 1578–1583 | DOI | MR | Zbl

[14] Xiaohong Lan, D. Marinucci, Yimin Xiao, “Strong local nondeterminism and exact modulus of continuity for spherical Gaussian fields”, Stochastic Process. Appl., 128:4 (2018), 1294–1315 | DOI | MR | Zbl

[15] Xiaohong Lan, Yimin Xiao, “Strong local nondeterminism of spherical fractional Brownian motion”, Statist. Probab. Lett., 135 (2018), 44–50 | DOI | MR | Zbl

[16] A. Lang, C. Schwab, “Isotropic Gaussian random fields on the sphere: regularity, fast simulation and stochastic partial differential equations”, Ann. Appl. Probab., 25:6 (2015), 3047–3094 | DOI | MR | Zbl

[17] N. N. Leonenko, M. D. Ruiz-Medina, “Increasing domain asymptotics for the first Minkowski functional of spherical random fields”, Theory Probab. Math. Statist., 97 (2018), 127–149 | DOI | MR | Zbl

[18] N. Leonenko, L. Sakhno, “On spectral representation of tensor random fields on the sphere”, Stoch. Anal. Appl., 30:1 (2012), 44–66 | DOI | MR | Zbl

[19] M. Lifshits, K. Volkova, “Bifractional Brownian motion: existence and border cases”, ESAIM Probab. Stat., 19 (2015), 766–781 | DOI | MR | Zbl

[20] Tianshi Lu, N. Leonenko, Chunsheng Ma, “Series representations of isotropic vector random fields on balls”, Statist. Probab. Lett., 156 (2020), 108583, 7 pp. | DOI | MR | Zbl

[21] Tianshi Lu, Chunsheng Ma, “Isotropic covariance matrix functions on compact two-point homogeneous spaces”, J. Theoret. Probab., 33:3 (2020), 1630–1656 | DOI | MR | Zbl

[22] C. Ma, “The Schoenberg–Lévy kernel and relationships among fractional Brownian motion, bifractional Brownian motion, and others”, Teoriya veroyatn. i ee primen., 57:4 (2012), 744–760 ; Theory Probab. Appl., 57:4 (2013), 619–632 | DOI | Zbl | DOI | MR

[23] Chunsheng Ma, “Multifractional vector Brownian motions, their decompositions, and generalizations”, Stoch. Anal. Appl., 33:3 (2015), 535–548 | DOI | MR | Zbl

[24] Chunsheng Ma, “Isotropic covariance matrix polynomials on spheres”, Stoch. Anal. Appl., 34:4 (2016), 679–706 | DOI | MR | Zbl

[25] Chunsheng Ma, “Time varying isotropic vector random fields on spheres”, J. Theoret. Probab., 30:4 (2017), 1763–1785 | DOI | MR | Zbl

[26] Chunsheng Ma, A. Malyarenko, “Time-varying isotropic vector random fields on compact two-point homogeneous spaces”, J. Theoret. Probab., 33:1 (2020), 319–339 | DOI | MR | Zbl

[27] A. Malyarenko, Invariant random fields on spaces with a group action, Probab. Appl. (N. Y.), Springer, Heidelberg, 2013, xviii+261 pp. | DOI | MR | Zbl

[28] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, eds., NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge Univ. Press, Cambridge, 2010, xvi+951 pp. | MR | Zbl

[29] L. D. Pitt, “Local times for Gaussian vector fields”, Indiana Univ. Math. J., 27:2 (1978), 309–330 | DOI | MR | Zbl

[30] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, 4th ed., Amer. Math. Soc., Providence, RI, 1975, xiii+432 pp. | MR | Zbl | Zbl

[31] M. Talagrand, “Hausdorff measure of trajectories of multiparameter fractional Brownian motion”, Ann. Probab., 23:2 (1995), 767–775 | DOI | MR | Zbl

[32] Fangfang Wang, Chunsheng Ma, “Peakedness and convex ordering for elliptically contoured random fields”, J. Statist. Plann. Inference, 197 (2018), 21–34 | DOI | MR | Zbl

[33] Yimin Xiao, “Strong local nondeterminism and sample path properties of Gaussian random fields”, Asymptotic theory in probability and statistics with applications, Adv. Lect. Math. (ALM), 2, Int. Press, Somerville, MA; Higher Education Press, Beijing, 2008, 136–176 | MR | Zbl

[34] Yimin Xiao, “Recent developments on fractal properties of Gaussian random fields”, Further developments in fractals and related fields, Trends Math., Birkhäuser/Springer, New York, 2013, 255–288 | DOI | MR | Zbl

[35] Yuan Xu, “Positive definite functions on the unit sphere and integrals of Jacobi polynomials”, Proc. Amer. Math. Soc., 146:5 (2018), 2039–2048 | DOI | MR | Zbl

[36] M. I. Yadrenko, Spectral theory of random fields, Optimization Software, Inc., Publications Division, New York, 1983, iii+259 pp. | MR | MR | Zbl | Zbl

[37] A. M. Yaglom, “Second-order homogeneous random fields”, Proceedings of the 4th Berkeley symposium on mathematical statistics and probability, v. 2, Univ. California Press, Berkeley, CA, 1961, 593–622 | MR | Zbl

[38] A. M. Yaglom, Correlation theory of stationary and related random functions, v. 1, Springer Ser. Statist., Springer-Verlag, New York, 1987, xiv+526 pp. | DOI | MR | Zbl