@article{TVP_2023_68_1_a5,
author = {M. D\"orpinghaus and I. Neri and E. Rold\'an and F. J\"ulicher},
title = {Optimal information usage in binary sequential hypothesis testing},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {93--105},
year = {2023},
volume = {68},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a5/}
}
TY - JOUR AU - M. Dörpinghaus AU - I. Neri AU - E. Roldán AU - F. Jülicher TI - Optimal information usage in binary sequential hypothesis testing JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2023 SP - 93 EP - 105 VL - 68 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a5/ LA - ru ID - TVP_2023_68_1_a5 ER -
M. Dörpinghaus; I. Neri; E. Roldán; F. Jülicher. Optimal information usage in binary sequential hypothesis testing. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 93-105. http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a5/
[1] R. Bogacz, K. Gurney, “The basal ganglia and cortex implement optimal decision making between alternative actions”, Neural Comput., 19:2 (2007), 442–477 | DOI | MR | Zbl
[2] T. M. Cover, J. A. Thomas, Elements of information theory, 2nd ed., Wiley-Interscience [John Wiley Sons], Hoboken, NJ, 2006, xxiv+748 pp. | DOI | MR | Zbl
[3] M. Dörpinghaus, I. Neri, É. Roldán, H. Meyr, F. Jülicher, Testing optimality of sequential decision-making, 2018, 42 pp., arXiv: 1801.01574
[4] M. Dörpinghaus, É. Roldán, I. Neri, H. Meyr, F. Jülicher, “An information theoretic analysis of sequential decision-making”, IEEE International Symposium on Information Theory (ISIT) (Aachen, Germany), IEEE, 2017, 3050–3054 | DOI
[5] V. P. Draglia, A. G. Tartakovsky, V. V. Veeravalli, “Multihypothesis sequential probability ratio tests. I. Asymptotic optimality”, IEEE Trans. Inform. Theory, 45:7 (1999), 2448–2461 | DOI | MR | Zbl
[6] T. T. Kadota, A. D. Wyner, “Coding theorem for stationary, asymptotically memoryless, continuous-time channels”, Ann. Math. Statist., 43:5 (1972), 1603–1611 | DOI | MR | Zbl
[7] S. Kira, T. Yang, M. N. Shadlen, “A neural implementation of {Wald's} sequential probability ratio test”, Neuron, 85:4 (2015), 861–873 | DOI
[8] P. L. Krapivsky, S. Redner, “First-passage duality”, J. Stat. Mech., 2018:9 (2018), 093208, 12 pp. | DOI | MR | Zbl
[9] Tze Leung Lai, “Asymptotic optimality of invariant sequential probability ratio tests”, Ann. Statist., 9:2 (1981), 318–333 | DOI | MR | Zbl
[10] W. Lindsey, H. Meyr, “Complete statistical description of the phase-error process generated by correlative tracking systems”, IEEE Trans. Inform. Theory, 23:2 (1977), 194–202 | DOI | Zbl
[11] R. S. Liptser, A. N. Shiryayev, Statistics of random processes, Appl. Math. (N.Y.), I, General theory, Springer-Verlag, New York–Heidelberg, 1977, x+394 pp. | DOI | MR | MR | Zbl | Zbl
[12] I. Neri, É. Roldán, F. Jülicher, “Statistics of infima and stopping times of entropy production and applications to active molecular processes”, Phys. Rev. X, 7:1 (2017), 011019, 30 pp. | DOI
[13] É. Roldán, I. Neri, M. Dörpinghaus, H. Meyr, F. Jülicher, “Decision making in the arrow of time”, Phys. Rev. Lett., 115:25 (2015), 250602, 5 pp. | DOI
[14] E. D. Siggia, M. Vergassola, “Decisions on the fly in cellular sensory systems”, Proc. Natl. Acad. Sci. USA, 110:39 (2013), E3704–E3712 | DOI | MR | Zbl
[15] A. G. Tartakovsky, “Asymptotic optimality of certain multihypothesis sequential tests: non-i.i.d. case”, Stat. Inference Stoch. Process., 1:3 (1998), 265–295 | DOI | MR | Zbl
[16] A. Tartakovsky, I. Nikiforov, M. Basseville, Sequential analysis. Hypothesis testing and changepoint detection, Monogr. Statist. Appl. Probab., 136, CRC Press, Boca Raton, FL, 2015, xxiv+579 pp. | DOI | MR | Zbl
[17] A. Tartakovsky, “Asymptotically optimal sequential tests for nonhomogeneous processes”, Sequential Anal., 17:1 (1998), 33–61 | DOI | MR | Zbl
[18] A. Wald, “Sequential tests of statistical hypotheses”, Ann. Math. Statist., 16:2 (1945), 117–186 | DOI | MR | Zbl
[19] A. Wald, J. Wolfowitz, “Optimum character of the sequential probability ratio test”, Ann. Math. Statist., 19:3 (1948), 326–339 | DOI | MR | Zbl