Optimal information usage in binary sequential hypothesis testing
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 93-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An interesting question is whether an information theoretic interpretation can be given of optimal algorithms in sequential hypothesis testing. We prove that for the binary sequential probability ratio test of a continuous observation process, the mutual information between the observation process up to the decision time and the actual hypothesis conditioned on the decision variable is equal to zero. This result can be interpreted as an optimal usage of the information on the hypothesis available in the observations by the sequential probability ratio test. As a consequence, the mutual information between the random decision time of the sequential probability ratio test and the actual hypothesis conditioned on the decision variable is also equal to zero.
Keywords: sequential hypothesis testing, sequential probability ratio test, mutual information.
@article{TVP_2023_68_1_a5,
     author = {M. D\"orpinghaus and I. Neri and E. Rold\'an and F. J\"ulicher},
     title = {Optimal information usage in binary sequential hypothesis testing},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {93--105},
     year = {2023},
     volume = {68},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a5/}
}
TY  - JOUR
AU  - M. Dörpinghaus
AU  - I. Neri
AU  - E. Roldán
AU  - F. Jülicher
TI  - Optimal information usage in binary sequential hypothesis testing
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 93
EP  - 105
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a5/
LA  - ru
ID  - TVP_2023_68_1_a5
ER  - 
%0 Journal Article
%A M. Dörpinghaus
%A I. Neri
%A E. Roldán
%A F. Jülicher
%T Optimal information usage in binary sequential hypothesis testing
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 93-105
%V 68
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a5/
%G ru
%F TVP_2023_68_1_a5
M. Dörpinghaus; I. Neri; E. Roldán; F. Jülicher. Optimal information usage in binary sequential hypothesis testing. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 93-105. http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a5/

[1] R. Bogacz, K. Gurney, “The basal ganglia and cortex implement optimal decision making between alternative actions”, Neural Comput., 19:2 (2007), 442–477 | DOI | MR | Zbl

[2] T. M. Cover, J. A. Thomas, Elements of information theory, 2nd ed., Wiley-Interscience [John Wiley Sons], Hoboken, NJ, 2006, xxiv+748 pp. | DOI | MR | Zbl

[3] M. Dörpinghaus, I. Neri, É. Roldán, H. Meyr, F. Jülicher, Testing optimality of sequential decision-making, 2018, 42 pp., arXiv: 1801.01574

[4] M. Dörpinghaus, É. Roldán, I. Neri, H. Meyr, F. Jülicher, “An information theoretic analysis of sequential decision-making”, IEEE International Symposium on Information Theory (ISIT) (Aachen, Germany), IEEE, 2017, 3050–3054 | DOI

[5] V. P. Draglia, A. G. Tartakovsky, V. V. Veeravalli, “Multihypothesis sequential probability ratio tests. I. Asymptotic optimality”, IEEE Trans. Inform. Theory, 45:7 (1999), 2448–2461 | DOI | MR | Zbl

[6] T. T. Kadota, A. D. Wyner, “Coding theorem for stationary, asymptotically memoryless, continuous-time channels”, Ann. Math. Statist., 43:5 (1972), 1603–1611 | DOI | MR | Zbl

[7] S. Kira, T. Yang, M. N. Shadlen, “A neural implementation of {Wald's} sequential probability ratio test”, Neuron, 85:4 (2015), 861–873 | DOI

[8] P. L. Krapivsky, S. Redner, “First-passage duality”, J. Stat. Mech., 2018:9 (2018), 093208, 12 pp. | DOI | MR | Zbl

[9] Tze Leung Lai, “Asymptotic optimality of invariant sequential probability ratio tests”, Ann. Statist., 9:2 (1981), 318–333 | DOI | MR | Zbl

[10] W. Lindsey, H. Meyr, “Complete statistical description of the phase-error process generated by correlative tracking systems”, IEEE Trans. Inform. Theory, 23:2 (1977), 194–202 | DOI | Zbl

[11] R. S. Liptser, A. N. Shiryayev, Statistics of random processes, Appl. Math. (N.Y.), I, General theory, Springer-Verlag, New York–Heidelberg, 1977, x+394 pp. | DOI | MR | MR | Zbl | Zbl

[12] I. Neri, É. Roldán, F. Jülicher, “Statistics of infima and stopping times of entropy production and applications to active molecular processes”, Phys. Rev. X, 7:1 (2017), 011019, 30 pp. | DOI

[13] É. Roldán, I. Neri, M. Dörpinghaus, H. Meyr, F. Jülicher, “Decision making in the arrow of time”, Phys. Rev. Lett., 115:25 (2015), 250602, 5 pp. | DOI

[14] E. D. Siggia, M. Vergassola, “Decisions on the fly in cellular sensory systems”, Proc. Natl. Acad. Sci. USA, 110:39 (2013), E3704–E3712 | DOI | MR | Zbl

[15] A. G. Tartakovsky, “Asymptotic optimality of certain multihypothesis sequential tests: non-i.i.d. case”, Stat. Inference Stoch. Process., 1:3 (1998), 265–295 | DOI | MR | Zbl

[16] A. Tartakovsky, I. Nikiforov, M. Basseville, Sequential analysis. Hypothesis testing and changepoint detection, Monogr. Statist. Appl. Probab., 136, CRC Press, Boca Raton, FL, 2015, xxiv+579 pp. | DOI | MR | Zbl

[17] A. Tartakovsky, “Asymptotically optimal sequential tests for nonhomogeneous processes”, Sequential Anal., 17:1 (1998), 33–61 | DOI | MR | Zbl

[18] A. Wald, “Sequential tests of statistical hypotheses”, Ann. Math. Statist., 16:2 (1945), 117–186 | DOI | MR | Zbl

[19] A. Wald, J. Wolfowitz, “Optimum character of the sequential probability ratio test”, Ann. Math. Statist., 19:3 (1948), 326–339 | DOI | MR | Zbl