On the number of trees of a~given size in a~Galton--Watson forest in the critical case
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 75-92
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a critical Galton–Watson branching process starting with $N$ particles and such that the number of offsprings of each particle is
distributed as $p_k=(k+1)^{-\tau}-(k+2)^{-\tau}$, $k=0,1,2,\dots$ . For the
corresponding Galton–Watson forest with $N$ trees and $n$ nonroot vertices,
we find the limit distributions for the number of trees of a given size as
$N,n \to \infty$, $n/ N^{\tau}\geq C>0$.
Keywords:
Galton–Watson forest, number of trees of a given size
Mots-clés : limit distribution.
Mots-clés : limit distribution.
@article{TVP_2023_68_1_a4,
author = {E. V. Khvorostyanskaya},
title = {On the number of trees of a~given size in {a~Galton--Watson} forest in the critical case},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {75--92},
publisher = {mathdoc},
volume = {68},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a4/}
}
TY - JOUR AU - E. V. Khvorostyanskaya TI - On the number of trees of a~given size in a~Galton--Watson forest in the critical case JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2023 SP - 75 EP - 92 VL - 68 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a4/ LA - ru ID - TVP_2023_68_1_a4 ER -
E. V. Khvorostyanskaya. On the number of trees of a~given size in a~Galton--Watson forest in the critical case. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 75-92. http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a4/