Mots-clés : limit distribution.
@article{TVP_2023_68_1_a4,
author = {E. V. Khvorostyanskaya},
title = {On the number of trees of a~given size in {a~Galton{\textendash}Watson} forest in the critical case},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {75--92},
year = {2023},
volume = {68},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a4/}
}
TY - JOUR AU - E. V. Khvorostyanskaya TI - On the number of trees of a given size in a Galton–Watson forest in the critical case JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2023 SP - 75 EP - 92 VL - 68 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a4/ LA - ru ID - TVP_2023_68_1_a4 ER -
E. V. Khvorostyanskaya. On the number of trees of a given size in a Galton–Watson forest in the critical case. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 75-92. http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a4/
[1] Yu. L. Pavlov, Random forests, VSP, Utrecht, 2000, 122 pp.
[2] N. I. Kazimirov, Yu. L. Pavlov, “A remark on the Galton–Watson forests”, Discrete Math. Appl., 10:1 (2000), 49–62 | DOI | DOI | MR | Zbl
[3] Yu. L. Pavlov, “The maximum tree of a random forest in the configuration graph”, Sb. Math., 212:9 (2021), 1329–1346 | DOI | DOI | MR | Zbl
[4] Yu. L. Pavlov, I. A. Cheplyukova, “Sizes of trees in a random forest and configuration graphs”, Proc. Steklov Inst. Math., 316 (2022), 280–297 | DOI | DOI | MR | Zbl
[5] R. van der Hofstad, Random graphs and complex networks, v. 1, Camb. Ser. Stat. Probab. Math., 43, Cambridge Univ. Press, Cambridge, 2017, xvi+321 pp. | DOI | MR | Zbl
[6] B. Bollobas, “A probabilistic proof of an asymptotic formula for the number of labelled regular graphs”, European J. Combin., 1:4 (1980), 311–316 | DOI | MR | Zbl
[7] H. Reittu, I. Norros, “On the power-law random graph model of massive data networks”, Performance Evaluation, 55:1-2 (2004), 3–23 | DOI
[8] E. V. Khvorostyanskaya, “Predelnye teoremy dlya maksimalnogo ob'ema dereva lesa Galtona–Vatsona v kriticheskom sluchae”, Diskret. matem., 34:2 (2022), 120–136 | DOI
[9] V. F. Kolchin, Random mappings, Transl. Ser. Math. Engrg., Optimization Software, Inc., Publications Division, New York, 1986, xiv+207 pp. | MR | MR | Zbl | Zbl
[10] E. V. Khvorostyanskaya, “O predelnom raspredelenii maksimalnogo ob'ema dereva v lese Galtona–Vatsona”, Trudy KarNTs RAN, 7 (2020), 89–97 | DOI
[11] W. Feller, An introduction to probability theory and its applications, v. 2, 2nd ed., John Wiley Sons, Inc., New York–London–Sydney, 1971, xxiv+669 pp. | MR | MR | Zbl | Zbl
[12] V. M. Zolotarev, One-dimensional stable distributions, Transl. Math. Monogr., 65, Amer. Math. Soc., Providence, RI, 1986, x+284 pp. | DOI | MR | MR | Zbl | Zbl