On the number of trees of a~given size in a~Galton--Watson forest in the critical case
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 75-92

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a critical Galton–Watson branching process starting with $N$ particles and such that the number of offsprings of each particle is distributed as $p_k=(k+1)^{-\tau}-(k+2)^{-\tau}$, $k=0,1,2,\dots$ . For the corresponding Galton–Watson forest with $N$ trees and $n$ nonroot vertices, we find the limit distributions for the number of trees of a given size as $N,n \to \infty$, $n/ N^{\tau}\geq C>0$.
Keywords: Galton–Watson forest, number of trees of a given size
Mots-clés : limit distribution.
@article{TVP_2023_68_1_a4,
     author = {E. V. Khvorostyanskaya},
     title = {On the number of trees of a~given size in {a~Galton--Watson} forest in the critical case},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {75--92},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a4/}
}
TY  - JOUR
AU  - E. V. Khvorostyanskaya
TI  - On the number of trees of a~given size in a~Galton--Watson forest in the critical case
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 75
EP  - 92
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a4/
LA  - ru
ID  - TVP_2023_68_1_a4
ER  - 
%0 Journal Article
%A E. V. Khvorostyanskaya
%T On the number of trees of a~given size in a~Galton--Watson forest in the critical case
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 75-92
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a4/
%G ru
%F TVP_2023_68_1_a4
E. V. Khvorostyanskaya. On the number of trees of a~given size in a~Galton--Watson forest in the critical case. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 75-92. http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a4/