On the number of trees of a given size in a Galton–Watson forest in the critical case
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 75-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a critical Galton–Watson branching process starting with $N$ particles and such that the number of offsprings of each particle is distributed as $p_k=(k+1)^{-\tau}-(k+2)^{-\tau}$, $k=0,1,2,\dots$ . For the corresponding Galton–Watson forest with $N$ trees and $n$ nonroot vertices, we find the limit distributions for the number of trees of a given size as $N,n \to \infty$, $n/ N^{\tau}\geq C>0$.
Keywords: Galton–Watson forest, number of trees of a given size
Mots-clés : limit distribution.
@article{TVP_2023_68_1_a4,
     author = {E. V. Khvorostyanskaya},
     title = {On the number of trees of a~given size in {a~Galton{\textendash}Watson} forest in the critical case},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {75--92},
     year = {2023},
     volume = {68},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a4/}
}
TY  - JOUR
AU  - E. V. Khvorostyanskaya
TI  - On the number of trees of a given size in a Galton–Watson forest in the critical case
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 75
EP  - 92
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a4/
LA  - ru
ID  - TVP_2023_68_1_a4
ER  - 
%0 Journal Article
%A E. V. Khvorostyanskaya
%T On the number of trees of a given size in a Galton–Watson forest in the critical case
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 75-92
%V 68
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a4/
%G ru
%F TVP_2023_68_1_a4
E. V. Khvorostyanskaya. On the number of trees of a given size in a Galton–Watson forest in the critical case. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 75-92. http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a4/

[1] Yu. L. Pavlov, Random forests, VSP, Utrecht, 2000, 122 pp.

[2] N. I. Kazimirov, Yu. L. Pavlov, “A remark on the Galton–Watson forests”, Discrete Math. Appl., 10:1 (2000), 49–62 | DOI | DOI | MR | Zbl

[3] Yu. L. Pavlov, “The maximum tree of a random forest in the configuration graph”, Sb. Math., 212:9 (2021), 1329–1346 | DOI | DOI | MR | Zbl

[4] Yu. L. Pavlov, I. A. Cheplyukova, “Sizes of trees in a random forest and configuration graphs”, Proc. Steklov Inst. Math., 316 (2022), 280–297 | DOI | DOI | MR | Zbl

[5] R. van der Hofstad, Random graphs and complex networks, v. 1, Camb. Ser. Stat. Probab. Math., 43, Cambridge Univ. Press, Cambridge, 2017, xvi+321 pp. | DOI | MR | Zbl

[6] B. Bollobas, “A probabilistic proof of an asymptotic formula for the number of labelled regular graphs”, European J. Combin., 1:4 (1980), 311–316 | DOI | MR | Zbl

[7] H. Reittu, I. Norros, “On the power-law random graph model of massive data networks”, Performance Evaluation, 55:1-2 (2004), 3–23 | DOI

[8] E. V. Khvorostyanskaya, “Predelnye teoremy dlya maksimalnogo ob'ema dereva lesa Galtona–Vatsona v kriticheskom sluchae”, Diskret. matem., 34:2 (2022), 120–136 | DOI

[9] V. F. Kolchin, Random mappings, Transl. Ser. Math. Engrg., Optimization Software, Inc., Publications Division, New York, 1986, xiv+207 pp. | MR | MR | Zbl | Zbl

[10] E. V. Khvorostyanskaya, “O predelnom raspredelenii maksimalnogo ob'ema dereva v lese Galtona–Vatsona”, Trudy KarNTs RAN, 7 (2020), 89–97 | DOI

[11] W. Feller, An introduction to probability theory and its applications, v. 2, 2nd ed., John Wiley Sons, Inc., New York–London–Sydney, 1971, xxiv+669 pp. | MR | MR | Zbl | Zbl

[12] V. M. Zolotarev, One-dimensional stable distributions, Transl. Math. Monogr., 65, Amer. Math. Soc., Providence, RI, 1986, x+284 pp. | DOI | MR | MR | Zbl | Zbl