@article{TVP_2023_68_1_a2,
author = {E. S. Palamarchuk},
title = {Optimal linear-quadratic regulator for a~stochastic system under mutually inverse time preferences in the cost},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {38--56},
year = {2023},
volume = {68},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a2/}
}
TY - JOUR AU - E. S. Palamarchuk TI - Optimal linear-quadratic regulator for a stochastic system under mutually inverse time preferences in the cost JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2023 SP - 38 EP - 56 VL - 68 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a2/ LA - ru ID - TVP_2023_68_1_a2 ER -
E. S. Palamarchuk. Optimal linear-quadratic regulator for a stochastic system under mutually inverse time preferences in the cost. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 38-56. http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a2/
[1] F. Man, H. Smith, “Design of linear regulators optimal for time-multiplied performance indices”, IEEE Trans. Automatic Control, 14:5 (1969), 527–529 | DOI | MR
[2] L. Karp, “Global warming and hyperbolic discounting”, J. Public Econ., 89:2-3 (2005), 261–282 | DOI
[3] E. S. Palamarchuk, “On optimal stochastic linear quadratic control with inversely proportional time-weighting in the cost”, Theory Probab. Appl., 67:1 (2022), 28–43 | DOI | DOI | MR | Zbl
[4] T. A. Belkina, E. S. Palamarchuk, “On stochastic optimality for a linear controller with attenuating disturbances”, Autom. Remote Control, 74:4 (2013), 628–641 | DOI | MR | Zbl
[5] H. Kwakernaak, R. Sivan, Linear optimal control systems, Wiley-Interscience [John Wiley Sons], New York–London–Sydney, xxv+575 pp. | MR | Zbl
[6] A. Ichikawa, H. Katayama, Linear time varying systems and sampled-data systems, Lect. Notes Control Inf. Sci., 265, Springer-Verlag, London, 2001, x+361 pp. | DOI | MR | Zbl
[7] L. Ya. Adrianova, Introduction to linear systems of differential equations, Transl. Math. Monogr., 146, Amer. Math. Soc., Providence, RI, 1995, x+204 pp. | DOI | MR | MR | Zbl
[8] K. W. Gruenberg, A. J. Weir, Linear geometry, Grad. Texts in Math., 49, 2nd ed., Springer, Berlin, 2013, 199 pp. | MR | Zbl
[9] R. W. Brockett, Finite dimensional linear systems, John Wiley and Sons, Inc., New York, 1970, 260 pp. | DOI | MR | Zbl
[10] M. H. A. Davis, Linear estimation and stochastic control, Chapman and Hall Math. Ser., Chapman and Hall, London; Halsted Press [John Wiley Sons], New York, 1977, xii+224 pp. | MR | MR | Zbl | Zbl
[11] E. S. Palamarchuk, “On the generalization of logarithmic upper function for solution of a linear stochastic differential equation with a nonexponentially stable matrix”, Differ. Equ., 54:2 (2018), 193–200 | DOI | DOI | MR | Zbl
[12] T. A. Belkina, Yu. M. Kabanov, E. L. Presman, “On a stochastic optimality of the feedback control in the LQG-problem”, Theory Probab. Appl., 48:4 (2004), 592–603 | DOI | DOI | MR | Zbl
[13] E. S. Palamarchuk, “Asymptotic behavior of the solution to a linear stochastic differential equation and almost sure optimality for a controlled stochastic process”, Comput. Math. Math. Phys., 54:1 (2014), 83–96 | DOI | DOI | MR | Zbl
[14] W. M. Wonham, “On a matrix Riccati equation of stochastic control”, SIAM J. Control, 6:4 (1968), 681–697 | DOI | MR | Zbl
[15] R. Bhatia, Positive definite matrices, Princeton Ser. Appl. Math., Princeton Univ. Press, Princeton, NJ, 2007, x+254 pp. | MR | Zbl
[16] E. S. Palamarchuk, “Time invariance of optimal control in a stochastic linear controller design with dynamic scaling of coefficients”, J. Comput. Syst. Sci. Int., 60:2 (2021), 202–212 | DOI | DOI | MR | Zbl
[17] E. S. Palamarchuk, “Stabilization of linear stochastic systems with a discount: modeling and estimation of the long-term effects from the application of optimal control strategies”, Math. Models Comput. Simul., 7:4 (2015), 381–388 | DOI | MR | Zbl
[18] C. S. Tapiero, Applied stochastic models and control for finance and insurance, Kluwer Acad. Publ., Boston, MA, 1998, xi+341 pp. | DOI | MR | Zbl
[19] Lixin Cui, Ruiqing Zhao, Wansheng Tang, “Principal-agent problem in a fuzzy environment”, IEEE Trans. Fuzzy Syst., 15:6 (2007), 1230–1237 | DOI