Probabilistic properties of Zipf sets and their maximal intersections
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 21-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article, the weak and strong laws of large numbers are obtained for various characteristics of a generalized Zipf set. Based on these results, we investigate the maximal intersection size between a random Zipf set and the elements of a large base of independent random sets of the same type but, eventually, with different parameters. This question is significant for applications.
Keywords: laws of large numbers, maximal intersections, Zipf sets, random sets.
@article{TVP_2023_68_1_a1,
     author = {M. A. Lifshits and I. M. Lialinov},
     title = {Probabilistic properties of {Zipf} sets and their maximal intersections},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {21--37},
     year = {2023},
     volume = {68},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a1/}
}
TY  - JOUR
AU  - M. A. Lifshits
AU  - I. M. Lialinov
TI  - Probabilistic properties of Zipf sets and their maximal intersections
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 21
EP  - 37
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a1/
LA  - ru
ID  - TVP_2023_68_1_a1
ER  - 
%0 Journal Article
%A M. A. Lifshits
%A I. M. Lialinov
%T Probabilistic properties of Zipf sets and their maximal intersections
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 21-37
%V 68
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a1/
%G ru
%F TVP_2023_68_1_a1
M. A. Lifshits; I. M. Lialinov. Probabilistic properties of Zipf sets and their maximal intersections. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 21-37. http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a1/

[1] G. K. Zipf, Selected studies of the principle of relative frequency in language, Harvard Univ. Press, Cambridge, MA, 1932, 51 pp. | DOI

[2] G. K. Zipf, The psycho-biology of language, Houghton Mifflin Co., Boston, 1935, ix+336 pp.

[3] C. D. Manning, H. Schütze, Foundations of statistical natural language processing, MIT Press, Cambridge, MA, 1999, xxxviii+680 pp. | MR | Zbl

[4] J.-B. Estoup, Gammes sténographiques, various editions, Paris, 1908–1916

[5] A. Lelu, “Jean-Baptiste Estoup and the origins of Zipf's law: a stenographer with a scientific mind (1868–1950)”, Bol. Estad. Investig. Oper., 30:1 (2014), 66–77

[6] M. Petruszewycz, “L'histoire de la loi d'Estoup–Zipf: documents”, Math. Sci. Humaines, 44 (1973), 41–56 | MR

[7] F. Auerbach, “Das Gesetz der Bevölkerungskonzentration”, Petermanns Geogr. Mitteilungen, 59 (1913), 74–76

[8] V. P. Maslov, T. V. Maslova, “On Zipf's law and rank distributions in linguistics and semiotics”, Math. Notes, 80:5 (2006), 679–691 | DOI | DOI | MR | Zbl

[9] M. P. Bakulina, “Application of the Zipf law to text compression”, J. Appl. Industr. Math., 2:4 (2008), 477–483 | DOI | MR | Zbl

[10] V. P. Maslov, “Zeroth-order phase transitions and Zipf law quantization”, Theoret. and Math. Phys., 150:1 (2007), 102–122 | DOI | DOI | MR | Zbl

[11] V. P. Maslov, “On a general theorem of set theory leading to the Gibbs, Bose–Einstein, and Pareto distributions as well as to the Zipf–Mandelbrot law for the stock market”, Math. Notes, 78:6 (2005), 807–813 | DOI | DOI | MR | Zbl

[12] Yu. I. Manin, “Zipf's law and L. Levin probability distributions”, Funct. Anal. Appl., 48:2 (2014), 116–127 | DOI | DOI | MR | Zbl

[13] Yu. A. Shreider, “Theoretical derivation of text statistical features (a possible proof of Zipf's law)”, Problems Inform. Transmission, 3:1 (1967), 45–49

[14] B. A. Trubnikov, I. A. Rumynskii, “Simple derivation of the Zipf–Krylov law for words and a possible “evolutionary” interpretation”, Soviet Phys. Dokl., 36:11 (1991), 739–742 | MR | Zbl

[15] B. Hoffmann, M. Lifshits, Yu. Lifshits, D. Nowotka, “Maximal intersection queries in randomized input models”, Theory Comput. Syst., 46:1 (2010), 104–119 | DOI | MR | Zbl