On the bounds for the expected maxima of random samples with known expected maxima of two samples of smaller size
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 4-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Our aim in the present paper is to give a new representation of the previously known estimates and further investigate upper and lower bounds for expected maxima of $n$ independent and identically distributed (i.i.d.) standardized random variables (r.v.'s) from known expected maxima of $m$ and $p$ r.v.'s with the same distribution, where $1. A new representation is obtained from expansion of the inverse distribution function in a system of orthonormal functions on the unit interval. A criterion for attainability of the resulting bounds is put forward. We also obtain asymptotic properties of normed bounds for maxima expectations and normed maxima of r.v.'s with distribution where a criterion for attainability of these bound holds.
Keywords: expected maxima, orthogonal expansion.
@article{TVP_2023_68_1_a0,
     author = {D. V. Ivanov},
     title = {On the bounds for the expected maxima of~random~samples with known expected maxima of two samples of smaller size},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {4--20},
     year = {2023},
     volume = {68},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a0/}
}
TY  - JOUR
AU  - D. V. Ivanov
TI  - On the bounds for the expected maxima of random samples with known expected maxima of two samples of smaller size
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 4
EP  - 20
VL  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a0/
LA  - ru
ID  - TVP_2023_68_1_a0
ER  - 
%0 Journal Article
%A D. V. Ivanov
%T On the bounds for the expected maxima of random samples with known expected maxima of two samples of smaller size
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 4-20
%V 68
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a0/
%G ru
%F TVP_2023_68_1_a0
D. V. Ivanov. On the bounds for the expected maxima of random samples with known expected maxima of two samples of smaller size. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 1, pp. 4-20. http://geodesic.mathdoc.fr/item/TVP_2023_68_1_a0/

[1] E. J. Gumbel, “The maxima of the mean largest value and of the range”, Ann. Math. Statistics, 25:1 (1954), 76–84 | DOI | MR | Zbl

[2] H. O. Hartley, H. A. David, “Universal bounds for mean range and extreme observation”, Ann. Math. Statistics, 25:1 (1954), 85–99 | DOI | MR | Zbl

[3] N. A. Irkhina, Printsip Vanga v matematicheskoi teorii strakhovaniya, Diss. ... kand. fiz.-matem. nauk, MGU, M., 2010, 137 pp.

[4] B. C. Arnold, “$p$-norm bounds on the expectation of the maximum of a possibly dependent sample”, J. Multivariate Anal., 17:3 (1985), 316–332 | DOI | MR | Zbl

[5] D. Bertsimas, K. Natarajan, Chung-Piaw Teo, “Tight bounds on expected order statistics”, Probab. Engrg. Inform. Sci., 20:4 (2006), 667–686 | DOI | MR | Zbl

[6] T. Rychlik, “Maximal expectations of extreme order statistics from increasing density and failure rate populations”, Comm. Statist. Theory Methods, 43:10-12 (2014), 2199–2213 | DOI | MR | Zbl

[7] A. Goroncy, T. Rychlik, “Evaluations of expectations of order statistics and spacings based on IFR distributions”, Metrika, 79:6 (2016), 635–657 | DOI | MR | Zbl

[8] D. V. Ivanov, “Upper bounds for the expected maxima of independent random variables given known first four moments”, Math. Notes, 110:3 (2021), 311–321 | DOI | DOI | MR | Zbl

[9] N. Balakrishnan, “Improving the Hartley–David–Gumbel bound for the mean of extreme order statistics”, Statist. Probab. Lett., 9:4 (1990), 291–294 | DOI | MR | Zbl

[10] M. A. Grigoreva, “Uslovnye granitsy mer riska v finansovoi matematike”, Sovremennye problemy matematiki i mekhaniki, 10, no. 3, MGU, M., 2015, 63–81

[11] D. V. Ivanov, “Uslovnye granitsy srednikh maksimumov sluchainykh velichin i ikh dostizhimost”, Sistemy i sredstva inform., 29:1 (2019), 140–163 | DOI

[12] N. Balakrishnan, S. M. Bendre, “Improved bounds for expectations of linear functions of order statistics”, Statistics, 24:2 (1993), 161–165 | DOI | MR | Zbl

[13] J. S. Huang, “Sequence of expectations of maximum-order statistics”, Statist. Probab. Lett., 38:2 (1998), 117–123 | DOI | MR | Zbl

[14] N. Sugiura, “On the orthogonal inverse expansion with an application to the moments of order statistics”, Osaka Math. J., 14 (1962), 253–263 | MR | Zbl

[15] B. C. Arnold, “Bounds on the expected maximum”, Comm. Statist. Theory Methods, 17:7 (1988), 2135–2150 | DOI | MR | Zbl

[16] P. C. Joshi, “Bounds and approximations for the moments of order statistics”, J. Amer. Statist. Assoc., 64:328 (1969), 1617–1624 | DOI | Zbl

[17] P. C. Joshi, N. Balakrishnan, “Bounds for the moments of extreme order statistics for large samples”, Math. Operationsforsch. Statist. Ser. Statist., 14:3 (1983), 387–396 | DOI | MR | Zbl

[18] A. V. Lebedev, Osnovy stokhasticheskoi teorii ekstremumov, Lenand, M., 2018, 104 pp.