On asymptotic expansion for mathematical expectation of a renewal--reward process with dependent components and heavy-tailed interarrival times
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 810-818

Voir la notice de l'article provenant de la source Math-Net.Ru

A renewal–reward process with dependent components and heavy-tailed interarrival times is investigated, and an asymptotic expansion as $t\to\infty$ for the expectation is derived.
Keywords: renewal process, renewal function, renewal–reward process, heavy-tailed distribution, subexponential distribution.
@article{TVP_2022_67_4_a9,
     author = {R. Aliyev and V. Bayramov},
     title = {On asymptotic expansion for mathematical expectation of a renewal--reward process with dependent components and heavy-tailed interarrival times},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {810--818},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a9/}
}
TY  - JOUR
AU  - R. Aliyev
AU  - V. Bayramov
TI  - On asymptotic expansion for mathematical expectation of a renewal--reward process with dependent components and heavy-tailed interarrival times
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 810
EP  - 818
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a9/
LA  - ru
ID  - TVP_2022_67_4_a9
ER  - 
%0 Journal Article
%A R. Aliyev
%A V. Bayramov
%T On asymptotic expansion for mathematical expectation of a renewal--reward process with dependent components and heavy-tailed interarrival times
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 810-818
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a9/
%G ru
%F TVP_2022_67_4_a9
R. Aliyev; V. Bayramov. On asymptotic expansion for mathematical expectation of a renewal--reward process with dependent components and heavy-tailed interarrival times. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 810-818. http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a9/