On asymptotic expansion for mathematical expectation of a renewal–reward process with dependent components and heavy-tailed interarrival times
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 810-818 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A renewal–reward process with dependent components and heavy-tailed interarrival times is investigated, and an asymptotic expansion as $t\to\infty$ for the expectation is derived.
Keywords: renewal process, renewal function, renewal–reward process, heavy-tailed distribution, subexponential distribution.
@article{TVP_2022_67_4_a9,
     author = {R. Aliyev and V. Bayramov},
     title = {On asymptotic expansion for mathematical expectation of a renewal{\textendash}reward process with dependent components and heavy-tailed interarrival times},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {810--818},
     year = {2022},
     volume = {67},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a9/}
}
TY  - JOUR
AU  - R. Aliyev
AU  - V. Bayramov
TI  - On asymptotic expansion for mathematical expectation of a renewal–reward process with dependent components and heavy-tailed interarrival times
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 810
EP  - 818
VL  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a9/
LA  - ru
ID  - TVP_2022_67_4_a9
ER  - 
%0 Journal Article
%A R. Aliyev
%A V. Bayramov
%T On asymptotic expansion for mathematical expectation of a renewal–reward process with dependent components and heavy-tailed interarrival times
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 810-818
%V 67
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a9/
%G ru
%F TVP_2022_67_4_a9
R. Aliyev; V. Bayramov. On asymptotic expansion for mathematical expectation of a renewal–reward process with dependent components and heavy-tailed interarrival times. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 810-818. http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a9/

[1] R. Aliyev, “On a stochastic process with a heavy tailed distributed component describing inventory model type of $(s,S)$”, Comm. Statist. Theory Methods, 46:5 (2017), 2571–2579 | DOI | MR | Zbl

[2] R. Aliyev, V. Bayramov, “On the asymptotic behaviour of the covariance function of the rewards of a multivariate renewal–reward process”, Statist. Probab. Lett., 127 (2017), 138–149 | DOI | MR | Zbl

[3] R. Aliyev, T. Khaniyev, B. Gever, “Weak convergence theorem for ergodic distribution of stochastic processes with discrete interference of chance and generalized reflecting barrier”, Theory Probab. Appl., 60:3 (2015), 502–513 | DOI | DOI | MR | Zbl

[4] R. T. Aliyev, T. A. Khaniyev, “On the limiting behavior of the characteristic function of the ergodic distribution of the semi-Markov walk with two boundaries”, Math. Notes, 102:4 (2017), 444–454 | DOI | DOI | MR | Zbl

[5] S. Asmussen, Ruin probabilities, Adv. Ser. Stat. Sci. Appl. Probab., 2, World Sci. Publ., River Edge, NJ, 2000, xii+385 pp. | DOI | MR | Zbl

[6] A. A. Borovkov, K. A. Borovkov, Asymptotic analysis of random walks. Heavy-tailed distributions, Encyclopedia Math. Appl., Cambridge Univ. Press, Cambridge, 118, xxx+625 pp. | DOI | MR | Zbl

[7] M. Brown, H. Solomon, “A second-order approximation for the variance of a renewal reward process”, Stochastic Process. Appl., 3:3 (1975), 301–314 | DOI | MR | Zbl

[8] S. Foss, D. Korshunov, S. Zachary, “Convolutions of long-tailed and subexponential distributions”, J. Appl. Probab., 46:3 (2009), 756–767 | DOI | MR | Zbl

[9] S. Foss, D. Korshunov, S. Zachary, An introduction to heavy-tailed and subexponential distributions, Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2011, x+123 pp. | DOI | MR | Zbl

[10] J. L. Geluk, J. B. G. Frenk, “Renewal theory for random variables with a heavy tailed distribution and finite variance”, Statist. Probab. Lett., 81:1 (2011), 77–82 | DOI | MR | Zbl

[11] C. Klüppelberg, “Subexponential distributions and integrated tails”, J. Appl. Probab., 25:1 (1988), 132–141 | DOI | MR | Zbl

[12] B. Patch, Y. Nazarathy, T. Taimre, “A correction term for the covariance of renewal-reward processes with multivariate rewards”, Statist. Probab. Lett., 102 (2015), 1–7 | DOI | MR | Zbl

[13] L. Rabehasaina, Jae-Kyung Woo, “On a multivariate renewal-reward process involving time delays and discounting: applications to IBNR processes and infinite server queues”, Queueing Syst., 90:3-4 (2018), 307–350 | DOI | MR | Zbl

[14] S. M. Ross, Stochastic processes, Wiley Ser. Probab. Statist. Probab. Statist., 2nd ed., John Wiley Sons, Inc., New York, 1996, xvi+510 pp. | MR | Zbl