@article{TVP_2022_67_4_a9,
author = {R. Aliyev and V. Bayramov},
title = {On asymptotic expansion for mathematical expectation of a renewal{\textendash}reward process with dependent components and heavy-tailed interarrival times},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {810--818},
year = {2022},
volume = {67},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a9/}
}
TY - JOUR AU - R. Aliyev AU - V. Bayramov TI - On asymptotic expansion for mathematical expectation of a renewal–reward process with dependent components and heavy-tailed interarrival times JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 810 EP - 818 VL - 67 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a9/ LA - ru ID - TVP_2022_67_4_a9 ER -
%0 Journal Article %A R. Aliyev %A V. Bayramov %T On asymptotic expansion for mathematical expectation of a renewal–reward process with dependent components and heavy-tailed interarrival times %J Teoriâ veroâtnostej i ee primeneniâ %D 2022 %P 810-818 %V 67 %N 4 %U http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a9/ %G ru %F TVP_2022_67_4_a9
R. Aliyev; V. Bayramov. On asymptotic expansion for mathematical expectation of a renewal–reward process with dependent components and heavy-tailed interarrival times. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 810-818. http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a9/
[1] R. Aliyev, “On a stochastic process with a heavy tailed distributed component describing inventory model type of $(s,S)$”, Comm. Statist. Theory Methods, 46:5 (2017), 2571–2579 | DOI | MR | Zbl
[2] R. Aliyev, V. Bayramov, “On the asymptotic behaviour of the covariance function of the rewards of a multivariate renewal–reward process”, Statist. Probab. Lett., 127 (2017), 138–149 | DOI | MR | Zbl
[3] R. Aliyev, T. Khaniyev, B. Gever, “Weak convergence theorem for ergodic distribution of stochastic processes with discrete interference of chance and generalized reflecting barrier”, Theory Probab. Appl., 60:3 (2015), 502–513 | DOI | DOI | MR | Zbl
[4] R. T. Aliyev, T. A. Khaniyev, “On the limiting behavior of the characteristic function of the ergodic distribution of the semi-Markov walk with two boundaries”, Math. Notes, 102:4 (2017), 444–454 | DOI | DOI | MR | Zbl
[5] S. Asmussen, Ruin probabilities, Adv. Ser. Stat. Sci. Appl. Probab., 2, World Sci. Publ., River Edge, NJ, 2000, xii+385 pp. | DOI | MR | Zbl
[6] A. A. Borovkov, K. A. Borovkov, Asymptotic analysis of random walks. Heavy-tailed distributions, Encyclopedia Math. Appl., Cambridge Univ. Press, Cambridge, 118, xxx+625 pp. | DOI | MR | Zbl
[7] M. Brown, H. Solomon, “A second-order approximation for the variance of a renewal reward process”, Stochastic Process. Appl., 3:3 (1975), 301–314 | DOI | MR | Zbl
[8] S. Foss, D. Korshunov, S. Zachary, “Convolutions of long-tailed and subexponential distributions”, J. Appl. Probab., 46:3 (2009), 756–767 | DOI | MR | Zbl
[9] S. Foss, D. Korshunov, S. Zachary, An introduction to heavy-tailed and subexponential distributions, Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2011, x+123 pp. | DOI | MR | Zbl
[10] J. L. Geluk, J. B. G. Frenk, “Renewal theory for random variables with a heavy tailed distribution and finite variance”, Statist. Probab. Lett., 81:1 (2011), 77–82 | DOI | MR | Zbl
[11] C. Klüppelberg, “Subexponential distributions and integrated tails”, J. Appl. Probab., 25:1 (1988), 132–141 | DOI | MR | Zbl
[12] B. Patch, Y. Nazarathy, T. Taimre, “A correction term for the covariance of renewal-reward processes with multivariate rewards”, Statist. Probab. Lett., 102 (2015), 1–7 | DOI | MR | Zbl
[13] L. Rabehasaina, Jae-Kyung Woo, “On a multivariate renewal-reward process involving time delays and discounting: applications to IBNR processes and infinite server queues”, Queueing Syst., 90:3-4 (2018), 307–350 | DOI | MR | Zbl
[14] S. M. Ross, Stochastic processes, Wiley Ser. Probab. Statist. Probab. Statist., 2nd ed., John Wiley Sons, Inc., New York, 1996, xvi+510 pp. | MR | Zbl