@article{TVP_2022_67_4_a7,
author = {E. O. Lenena},
title = {Accuracy of estimation of the vector of queue lengths for open {Jackson} networks},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {792--801},
year = {2022},
volume = {67},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a7/}
}
E. O. Lenena. Accuracy of estimation of the vector of queue lengths for open Jackson networks. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 792-801. http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a7/
[1] J. R. Jackson, “Networks of waiting lines”, Operations Res., 5:4 (1957), 518–521 | DOI | MR | Zbl
[2] M. I. Reiman, “Open queueing networks in heavy traffic”, Math. Oper. Res., 9:3 (1984), 441–458 | DOI | MR | Zbl
[3] F. Baccelli, S. Foss, J. Mairesse, “Stationary ergodic Jackson networks: results and counter-examples”, Stochastic networks. Theory and applications, Roy. Statist. Soc. Lecture Note Ser., 4, The Clarendon Press, Oxford Univ. Press, New York, 1996, 281–307 | Zbl
[4] A. N. Rybko, A. L. Stolyar, “Ergodicity of stochastic processes describing the operation of open queueing networks”, Problems Inform. Transmission, 28:3 (1992), 199–220 | MR | Zbl
[5] L. G. Afanas'eva, “On the ergodicity of an open queueing network”, Theory Probab. Appl., 32:4 (1987), 710–714 | DOI | MR | Zbl
[6] Hong Chen, D. D. Yao, Fundamentals of queueing networks. Performance, asymptotics, and optimization, Appl. Math. (N. Y.), 46, Springer-Verlag, New York, 2001, xviii+405 pp. | DOI | MR | Zbl
[7] E. Bashtova, E. Lenena, “Jackson network in a random environment: strong approximation”, Dalnevost. matem. zhurn., 20:2 (2020), 144–149 | DOI | MR | Zbl
[8] J. Komlós, P. Major, G. Tusnády, “An approximation of partial sums of independent $\mathbf{RV}$'s, and the sample $\mathbf{DF}$. I”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 32 (1975), 111–131 | DOI | MR | Zbl
[9] A. Yu. Zaitsev, “The accuracy of strong Gaussian approximation for sums of independent random vectors”, Russian Math. Surveys, 68:4 (2013), 721–761 | DOI | DOI | MR | Zbl
[10] W. L. Smith, “Regenerative stochastic processes”, Proc. Royal Soc. London Ser. A, 232:1188 (1955), 6–31 | DOI | MR | Zbl
[11] J. B. Goodman, W. A. Massey, “The non-ergodic Jackson network”, J. Appl. Probab., 21:4 (1984), 860–869 | DOI | MR | Zbl
[12] J. M. Harrison, M. I. Reiman, “Reflected Brownian motion on an orthant”, Ann. Probab., 9:2 (1981), 302–308 | DOI | MR | Zbl
[13] E. Bashtova, A. Shashkin, “Strong Gaussian approximation for cumulative processes”, Stochastic Process. Appl., 150 (2022), 1–18 | DOI | MR | Zbl
[14] M. Csörgő, P. Deheuvels, L. Horváth, “An approximation of stopped sums with applications in queueing theory”, Adv. in Appl. Probab., 19:3 (1987), 674–690 | DOI | MR | Zbl
[15] M. Csörgő, L. Horváth, J. Steinebach, “Invariance principles for renewal processes”, Ann. Probab., 15:4 (1987), 1441–1460 | DOI | MR | Zbl
[16] M. Csörgő, P. Révész, “How big are the increments of a Wiener process?”, Ann. Probab., 7:4 (1979), 731–737 | DOI | MR | Zbl