Keywords: independent and identically distributed matrices, spectral statistic, linear eigenvalue statistics, rate of convergence, circular law, Wasserstein distance.
@article{TVP_2022_67_4_a6,
author = {S. O'Rourke and N. Williams},
title = {Partial linear eigenvalue statistics for non-hermitian random matrices},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {768--791},
year = {2022},
volume = {67},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a6/}
}
S. O'Rourke; N. Williams. Partial linear eigenvalue statistics for non-hermitian random matrices. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 768-791. http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a6/
[1] J. Alt, L. Erdős, T. Krüger, “Local inhomogeneous circular law”, Ann. Appl. Probab., 28:1 (2018), 148–203 | DOI | MR | Zbl
[2] J. Alt, L. Erdős, T. Krüger, “Spectral radius of random matrices with independent entries”, Probab. Math. Phys., 2:2 (2021), 221–280 ; (2019), 44 pp., arXiv: 1907.13631 | DOI | MR
[3] Z. D. Bai, “Circular law”, Ann. Probab., 25:1 (1997), 494–529 | DOI | MR | Zbl
[4] Zhigang Bao, Guangming Pan, Wang Zhou, “Central limit theorem for partial linear eigenvalue statistics of Wigner matrices”, J. Stat. Phys., 150:1 (2013), 88–129 | DOI | MR | Zbl
[5] T. Berggren, M. Duits, “Mesoscopic fluctuations for the thinned circular unitary ensemble”, Math. Phys. Anal. Geom., 20:3 (2017), 19, 40 pp. | DOI | MR | Zbl
[6] O. Bohigas, M. P. Pato, “Missing levels in correlated spectra”, Phys. Lett. B, 595:1-4 (2004), 171–176 | DOI
[7] O. Bohigas, M. P. Pato, “Randomly incomplete spectra and intermediate statistics”, Phys. Rev. E (3), 74:3 (2006), 036212, 6 pp. | DOI | MR
[8] C. Bordenave, D. Chafaï, “Around the circular law”, Probab. Surv., 9 (2012), 1–89 | DOI | MR | Zbl
[9] P. Bourgade, Horng-Tzer Yau, Jun Yin, “Local circular law for random matrices”, Probab. Theory Related Fields, 159:3-4 (2014), 545–595 | DOI | MR | Zbl
[10] P. Bourgade, Horng-Tzer Yau, Jun Yin, “The local circular law II: the edge case”, Probab. Theory Related Fields, 159:3-4 (2014), 619–660 | DOI | MR | Zbl
[11] D. Chafaï, A. Hardy, M. Maïda, “Concentration for Coulomb gases and Coulomb transport inequalities”, J. Funct. Anal., 275:6 (2018), 1447–1483 | DOI | MR | Zbl
[12] G. Cipolloni, L. Erdős, D. Schröder, Central limit theorem for linear eigenvalue statistics of non-Hermitian random matrices, 2021 (v1 – 2019), 65 pp., arXiv: 1912.04100
[13] G. Cipolloni, L. Erdős, D. Schröder, “Fluctuation around the circular law for random matrices with real entries”, Electron. J. Probab., 26 (2021), 24, 61 pp. ; (2020), 50 pp., arXiv: 2002.02438 | DOI | MR | Zbl
[14] N. Coston, S. O'Rourke, “Gaussian fluctuations for linear eigenvalue statistics of products of independent iid random matrices”, J. Theoret. Probab., 33:3 (2020), 1541–1612 ; (2019 (v1 – 2018)), 64 pp., arXiv: 1809.08367 | DOI | MR | Zbl
[15] R. Durrett, Probability. Theory and examples, Camb. Ser. Stat. Probab. Math., 31, 4th ed., Cambridge Univ. Press, Cambridge, 2010, x+428 pp. | DOI | MR | Zbl
[16] A. Edelman, “The probability that a random real Gaussian matrix has $k$ real eigenvalues, related distributions, and the circular law”, J. Multivariate Anal., 60:2 (1997), 203–232 | DOI | MR | Zbl
[17] G. B. Folland, Real analysis. Modern techniques and their applications, Pure Appl. Math. (N. Y.), 2nd ed., Wiley-Interscience Publ. John Wiley Sons, Inc., New York, 1999, xvi+386 pp. | MR | Zbl
[18] J. Ginibre, “Statistical ensembles of complex, quaternion, and real matrices”, J. Math. Phys., 6 (1965), 440–449 | DOI | MR | Zbl
[19] V. L. Girko, “The circular law”, Theory Probab. Appl., 29:4 (1985), 694–706 | DOI | MR | Zbl
[20] F. Götze, A. Tikhomirov, “The circular law for random matrices”, Ann. Probab., 38:4 (2010), 1444–1491 | DOI | MR | Zbl
[21] I. Jana, “CLT for non-Hermitian random band matrices with variance profiles”, J. Stat. Phys., 187:2 (2022), 13, 25 pp. ; (2020 (v1 – 2019)), 21 pp., arXiv: 1904.11098 | DOI | MR | Zbl
[22] K. Johansson, “On Szegő's asymptotic formula for Toeplitz determinants and generalizations”, Bull. Sci. Math. (2), 112:3 (1988), 257–304 | MR | Zbl
[23] P. Kopel, Linear statistics of non-Hermitian matrices matching the real or complex Ginibre ensemble to four moments, 2015, 52 pp., arXiv: 1510.02987
[24] P. Kopel, S. O'Rourke, Van Vu, “Random matrix products: universality and least singular values”, Ann. Probab., 48:3 (2020), 1372–1410 ; (2019 (v1 – 2018)), 60 pp., arXiv: 1802.03004 | DOI | MR | Zbl
[25] G. Lambert, “Incomplete determinantal processes: from random matrix to Poisson statistics”, J. Stat. Phys., 176:6 (2019), 1343–1374 | DOI | MR | Zbl
[26] E. S. Meckes, M. W. Meckes, “A rate of convergence for the circular law for the complex Ginibre ensemble”, Ann. Fac. Sci. Toulouse Math. (6), 24:1 (2015), 93–117 | DOI | MR | Zbl
[27] M. L. Mehta, Random matrices and the statistical theory of energy levels, Academic Press, New York–London, 1967, x+259 pp. | MR | Zbl
[28] S. O'Rourke, D. Renfrew, “Central limit theorem for linear eigenvalue statistics of elliptic random matrices”, J. Theoret. Probab., 29:3 (2016), 1121–1191 | DOI | MR | Zbl
[29] S. O'Rourke, A. Soshnikov, “Partial linear eigenvalue statistics for Wigner and sample covariance random matrices”, J. Theoret. Probab., 28:2 (2015), 726–744 | DOI | MR | Zbl
[30] V. V. Petrov, Limit theorems of probability theory. Sequences of independent random variables, Oxford Stud. Probab., 4, The Clarendon Press, Oxford Univ. Press, New York, 1995, xii+292 pp. | MR | Zbl
[31] B. Rider, J. W. Silverstein, “Gaussian fluctuations for non-Hermitian random matrix ensembles”, Ann. Probab., 34:6 (2006), 2118–2143 | DOI | MR | Zbl
[32] B. Rider, B. Virág, “The noise in the circular law and the Gaussian free field”, Int. Math. Res. Not. IMRN, 2007:2 (2007), rnm006, 33 pp. | DOI | MR | Zbl
[33] T. Tao, “Outliers in the spectrum of iid matrices with bounded rank perturbations”, Probab. Theory Related Fields, 155:1-2 (2013), 231–263 | DOI | MR | Zbl
[34] T. Tao, Van Vu, “Random matrices: the circular law”, Commun. Contemp. Math., 10:2 (2008), 261–307 | DOI | MR | Zbl
[35] T. Tao, Van Vu, “Random matrices: universality of ESDs and the circular law”, Ann. Probab., 38:5 (2010), 2023–2065 | DOI | MR | Zbl
[36] T. Tao, Van Vu, “Random matrices: universality of local spectral statistics of non-Hermitian matrices”, Ann. Probab., 43:2 (2015), 782–874 | DOI | MR | Zbl
[37] Jun Yin, “The local circular law III: general case”, Probab. Theory Related Fields, 160:3-4 (2014), 679–732 | DOI | MR | Zbl