Partial linear eigenvalue statistics for non-hermitian random matrices
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 768-791

Voir la notice de l'article provenant de la source Math-Net.Ru

For an $n \times n$ independent-entry random matrix $X_n$ with eigenvalues $\lambda_1, \dots, \lambda_n$, the seminal work of Rider and Silverstein [Ann. Probab., 34 (2006), pp. 2118–2143] asserts that the fluctuations of the linear eigenvalue statistics $\sum_{i=1}^n f(\lambda_i)$ converge to a Gaussian distribution for sufficiently nice test functions $f$. We study the fluctuations of $\sum_{i=1}^{n-K} f(\lambda_i)$, where $K$ randomly chosen eigenvalues have been removed from the sum. In this case, we identify the limiting distribution and show that it need not be Gaussian. Our results hold for the case when $K$ is fixed as well as for the case when $K$ tends to infinity with $n$. The proof utilizes the predicted locations of the eigenvalues introduced by E. Meckes and M. Meckes, [Ann. Fac. Sci. Toulouse Math. (6), 24 (2015), pp. 93–117]. As a consequence of our methods, we obtain a rate of convergence for the empirical spectral distribution of $X_n$ to the circular law in Wasserstein distance, which may be of independent interest.
Mots-clés : random matrix
Keywords: independent and identically distributed matrices, spectral statistic, linear eigenvalue statistics, rate of convergence, circular law, Wasserstein distance.
@article{TVP_2022_67_4_a6,
     author = {S. O'Rourke and N. Williams},
     title = {Partial linear eigenvalue statistics for non-hermitian random matrices},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {768--791},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a6/}
}
TY  - JOUR
AU  - S. O'Rourke
AU  - N. Williams
TI  - Partial linear eigenvalue statistics for non-hermitian random matrices
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 768
EP  - 791
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a6/
LA  - ru
ID  - TVP_2022_67_4_a6
ER  - 
%0 Journal Article
%A S. O'Rourke
%A N. Williams
%T Partial linear eigenvalue statistics for non-hermitian random matrices
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 768-791
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a6/
%G ru
%F TVP_2022_67_4_a6
S. O'Rourke; N. Williams. Partial linear eigenvalue statistics for non-hermitian random matrices. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 768-791. http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a6/