Generalized Poisson--Dirichlet distributions based on the Dickman subordinator
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 745-767
Voir la notice de l'article provenant de la source Math-Net.Ru
We study exchangeable random partitions based on an underlying Dickman
subordinator and the corresponding family of Poisson–Dirichlet distributions.
The large sample distribution of the vector representing the block sizes and the
number of blocks in a partition of $\{1,2,\dots,n\}$ is shown to be, after
norming and centering, a product of independent Poissons and a normal
distribution. In a species or gene sampling situation, these quantities
represent the abundances and the numbers of species or genes observed in
a sample of size $n$ from the corresponding Poisson–Dirichlet distribution. We
include a summary of known convergence results concerning the Dickman
subordinator in this context.
Mots-clés :
exchangeable random partitions, negative binomial point process
Keywords: generalized Poisson–Dirichlet laws, Dickman subordinator and distribution, species sampling models, Ewens sampling formula.
Keywords: generalized Poisson–Dirichlet laws, Dickman subordinator and distribution, species sampling models, Ewens sampling formula.
@article{TVP_2022_67_4_a5,
author = {R. Maller and S. Shemehsavar},
title = {Generalized {Poisson--Dirichlet} distributions based on the {Dickman} subordinator},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {745--767},
publisher = {mathdoc},
volume = {67},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a5/}
}
TY - JOUR AU - R. Maller AU - S. Shemehsavar TI - Generalized Poisson--Dirichlet distributions based on the Dickman subordinator JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 745 EP - 767 VL - 67 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a5/ LA - ru ID - TVP_2022_67_4_a5 ER -
R. Maller; S. Shemehsavar. Generalized Poisson--Dirichlet distributions based on the Dickman subordinator. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 745-767. http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a5/