Generalized Poisson–Dirichlet distributions based on the Dickman subordinator
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 745-767 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study exchangeable random partitions based on an underlying Dickman subordinator and the corresponding family of Poisson–Dirichlet distributions. The large sample distribution of the vector representing the block sizes and the number of blocks in a partition of $\{1,2,\dots,n\}$ is shown to be, after norming and centering, a product of independent Poissons and a normal distribution. In a species or gene sampling situation, these quantities represent the abundances and the numbers of species or genes observed in a sample of size $n$ from the corresponding Poisson–Dirichlet distribution. We include a summary of known convergence results concerning the Dickman subordinator in this context.
Mots-clés : exchangeable random partitions, negative binomial point process
Keywords: generalized Poisson–Dirichlet laws, Dickman subordinator and distribution, species sampling models, Ewens sampling formula.
@article{TVP_2022_67_4_a5,
     author = {R. Maller and S. Shemehsavar},
     title = {Generalized {Poisson{\textendash}Dirichlet} distributions based on the {Dickman} subordinator},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {745--767},
     year = {2022},
     volume = {67},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a5/}
}
TY  - JOUR
AU  - R. Maller
AU  - S. Shemehsavar
TI  - Generalized Poisson–Dirichlet distributions based on the Dickman subordinator
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 745
EP  - 767
VL  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a5/
LA  - ru
ID  - TVP_2022_67_4_a5
ER  - 
%0 Journal Article
%A R. Maller
%A S. Shemehsavar
%T Generalized Poisson–Dirichlet distributions based on the Dickman subordinator
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 745-767
%V 67
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a5/
%G ru
%F TVP_2022_67_4_a5
R. Maller; S. Shemehsavar. Generalized Poisson–Dirichlet distributions based on the Dickman subordinator. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 745-767. http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a5/

[1] R. Arratia, A. D. Barbour, S. Tavaré, Logarithmic combinatorial structures: a probabilistic approach, EMS Monogr. Math., Eur. Math. Soc. (EMS), Zürich, 2003, xii+363 pp. | DOI | MR | Zbl

[2] K. Dickman, “On the frequency of numbers containing prime factors of a certain relative magnitude”, Ark. Mat. Astron. Fys., 22A (1930), 10, 14 pp. | Zbl

[3] P. Donnelly, T. G. Kurtz, S. Tavaré, “On the functional central limit theorem for the Ewens sampling formula”, Ann. Appl. Probab., 1:4 (1991), 539–545 | DOI | MR | Zbl

[4] W. J. Ewens, “The sampling theory of selectively neutral alleles”, Theoret. Population Biol., 3 (1972), 87–112 | DOI | MR | Zbl

[5] W. J. Ewens, G. A. Watterson, “Kingman and mathematical population genetics”, Probability and mathematical genetics, London Math. Soc. Lecture Note Ser., 378, Cambridge Univ. Press, Cambridge, 2010, 238–263 | DOI | MR | Zbl

[6] S. Favaro, Shui Feng, “Asymptotics for the number of blocks in a conditional Ewens–Pitman sampling model”, Electron. J. Probab., 19 (2014), 21, 15 pp. | DOI | MR | Zbl

[7] J. Gil-Pelaez, “Note on the inversion theorem”, Biometrika, 38:3-4 (1951), 481–482 | DOI | MR | Zbl

[8] R. C. Griffiths, S. Lessard, “Ewens' sampling formula and related formulae: combinatorial proofs, extensions to variable population size and applications to ages of alleles”, Theoret. Population Biol., 68:3 (2005), 167–177 | DOI | Zbl

[9] J. C. Hansen, “A functional central limit theorem for the Ewens sampling formula”, J. Appl. Probab., 27:1 (1990), 28–43 | DOI | MR | Zbl

[10] Yuguang F. Ipsen, R. A. Maller, “Negative binomial construction of random discrete distributions on the infinite simplex”, Theory Stoch. Process., 22(38):2 (2017), 34–46 | MR | Zbl

[11] Yuguang F. Ipsen, S. Shemehsavar, R. A. Maller, Models for genetic diversity generated by negative binomial point processes, 2019, 18 pp., arXiv: 1904.13046

[12] Yuguang Ipsen, R. Maller, S. Shemehsavar, “Limiting distributions of generalised Poisson–Dirichlet distributions based on negative binomial processes”, J. Theoret. Probab., 33:4 (2020), 1974–2000 | DOI | MR | Zbl

[13] Yuguang Ipsen, R. Maller, S. Shemehsavar, “Size biased sampling from the Dickman subordinator”, Stochastic Process. Appl., 130:11 (2020), 6880–6900 | DOI | MR | Zbl

[14] Yuguang Ipsen, R. Maller, S. Shemehsavar, “A generalised Dickman distribution and the number of species in a negative binomial process model”, Adv. in Appl. Probab., 53:2 (2021), 370–399 | DOI | MR | Zbl

[15] G. I. Ivchenko, Yu. I. Medvedev, “Razbieniya bez malykh blokov i $r$-prisoedinennye polinomy Bella v parametricheskoi modeli: veroyatnostno-statisticheskii analiz”, Matem. vopr. kriptogr., 10:1 (2019), 27–40 | DOI | MR | Zbl

[16] J. F. C. Kingman, “Random discrete distributions”, J. Roy. Statist. Soc. Ser. B, 37 (1975), 1–15 | DOI | MR | Zbl

[17] J. F. C. Kingman, “The representation of partition structures”, J. London Math. Soc. (2), 18:2 (1978), 374–380 | DOI | MR | Zbl

[18] V. F. Kolchin, Random graphs, Encyclopedia Math. Appl., 53, Cambridge Univ. Press, Cambridge, 1999, xii+252 pp. | DOI | MR | Zbl

[19] R. M. Korwar, M. Hollander, “Contributions to the theory of Dirichlet processes”, Ann. Probab., 1:4 (1973), 705–711 | DOI | MR | Zbl

[20] M. Perman, J. Pitman, M. Yor, “Size-biased sampling of Poisson point processes and excursions”, Probab. Theory Related Fields, 92:1 (1992), 21–39 | DOI | MR | Zbl

[21] R. G. Pinsky, “On the strange domain of attraction to generalized Dickman distributions for sums of independent random variables”, Electron. J. Probab., 23 (2018), 3, 17 pp. | DOI | MR | Zbl

[22] G. A. Watterson, “The sampling theory of selectively neutral alleles”, Adv. in Appl. Probab., 6:3 (1974), 463–488 | DOI | MR | Zbl

[23] A. L. Yakymiv, “Limit theorem for the general number of cycles in a random $A$-permutation”, Theory Probab. Appl., 52:1 (2008), 133–146 | DOI | DOI | MR | Zbl

[24] A. L. Yakymiv, “On a number of components in a random $A$-mapping”, Theory Probab. Appl., 59:1 (2015), 114–127 | DOI | DOI | MR | Zbl

[25] A. L. Yakymiv, “Size distribution of the largest component of a random $A$-mapping”, Discrete Math. Appl., 31:2 (2021), 145–153 | DOI | DOI | MR | Zbl

[26] Mingyuan Zhou, S. Favaro, S. G. Walker, “Frequency of frequencies distributions and size-dependent exchangeable random partitions”, J. Amer. Statist. Assoc., 112:520 (2017), 1623–1635 | DOI | MR