Uniqueness of the inverse first-passage time problem and the shape of the Shiryaev boundary
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 717-744 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a distribution on the positive extended real line, the two-sided inverse first-passage time problem for Brownian motion asks for a function such that the first passage time of this function by a reflected Brownian motion has the given distribution. We combine the ideas of Ekström and Janson, which were developed within the scope of the one-sided inverse first-passage time problem, with the methods of De Masi et al., which were used in the context of free boundary problems, in order to give a different proof for the uniqueness for the two-sided inverse first-passage time problem by using a stochastic order relation. We provide criteria for qualitative properties of solutions of the inverse first-passage problem, which apply to the boundary corresponding to the exponential distribution.
Keywords: inverse first-passage time, Brownian motion, Shiryaev problem, boundary crossing.
@article{TVP_2022_67_4_a4,
     author = {A. Klump and M. Kolb},
     title = {Uniqueness of the inverse first-passage time problem and the shape of the {Shiryaev} boundary},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {717--744},
     year = {2022},
     volume = {67},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a4/}
}
TY  - JOUR
AU  - A. Klump
AU  - M. Kolb
TI  - Uniqueness of the inverse first-passage time problem and the shape of the Shiryaev boundary
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 717
EP  - 744
VL  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a4/
LA  - ru
ID  - TVP_2022_67_4_a4
ER  - 
%0 Journal Article
%A A. Klump
%A M. Kolb
%T Uniqueness of the inverse first-passage time problem and the shape of the Shiryaev boundary
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 717-744
%V 67
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a4/
%G ru
%F TVP_2022_67_4_a4
A. Klump; M. Kolb. Uniqueness of the inverse first-passage time problem and the shape of the Shiryaev boundary. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 717-744. http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a4/

[1] M. Abundo, “An overview on inverse first-passage-time problems for one-dimensional diffusion processes”, Recent advances in probability and statistics, Lect. Notes Semin. Interdiscip. Mat., 12, Semin. Interdiscip. Mat. (S.I.M.), Potenza, 2015, 1–44 | MR | Zbl

[2] S. V. Anulova, “On Markov stopping times with a given distribution for a Wiener process”, Theory Probab. Appl., 25:2 (1981), 362–366 | DOI | MR | Zbl

[3] G. Beer, Topologies on closed and closed convex sets, Math. Appl., 268, Kluwer Acad. Publ., Dordrecht, 1993, xii+340 pp. | DOI | MR | Zbl

[4] M. Beiglböck, M. Eder, C. Elgert, U. Schmock, “Geometry of distribution-constrained optimal stopping problems”, Probab. Theory Related Fields, 172:1-2 (2018), 71–101 | DOI | MR | Zbl

[5] J. Berestycki, É. Brunet, J. Nolen, S. Penington, “A free boundary problem arising from branching Brownian motion with selection”, Trans. Amer. Math. Soc., 374:9 (2021), 6269–6329 | DOI | MR | Zbl

[6] J. Berestycki, É. Brunet, S. Penington, “Global existence for a free boundary problem of Fisher–KPP type”, Nonlinearity, 32:10 (2019), 3912–3939 | DOI | MR | Zbl

[7] Xinfu Chen, Lan Cheng, J. Chadam, D. Saunders, “Existence and uniqueness of solutions to the inverse boundary crossing problem for diffusions”, Ann. Appl. Probab., 21:5 (2011), 1663–1693 | DOI | MR | Zbl

[8] Lan Cheng, Xinfu Chen, J. Chadam, D. Saunders, “Analysis of an inverse first passage problem from risk management”, SIAM J. Math. Anal., 38:3 (2006), 845–873 | DOI | MR | Zbl

[9] G. Dal Maso, An introduction to $\Gamma$-convergence, Progr. Nonlinear Differential Equations Appl., 8, Birkhäuser Boston, Inc., Boston, MA, 1993, xiv+340 pp. | DOI | MR | Zbl

[10] A. De Masi, P. A. Ferrari, E. Presutti, N. Soprano-Loto, “Hydrodynamics of the $N$-BBM process”, Stochastic dynamics out of equilibrium, Springer Proc. Math. Stat., 282, Springer, Cham, 2019, 523–549 | DOI | MR | Zbl

[11] E. Ekström, S. Janson, “The inverse first-passage problem and optimal stopping”, Ann. Appl. Probab., 26:5 (2016), 3154–3177 | DOI | MR | Zbl

[12] F. Hausdorff, “Über halbstetige Funktionen und deren Verallgemeinerung”, Math. Z., 5:3-4 (1919), 292–309 | DOI | MR | Zbl

[13] S. Jaimungal, A. Kreinin, A. Valov, “The generalized Shiryaev problem and Skorokhod embedding”, Teoriya veroyatn. i ee primen., 58:3 (2013), 614–623 ; Theory Probab. Appl., 58:3 (2014), 493–502 | DOI | Zbl | DOI | MR

[14] J. M. Lee, “Free boundary problems and biological systems with selection rules”, Arch. Math. (Basel), 114:1 (2020), 85–95 | DOI | MR | Zbl

[15] Y. Potiron, Existence in the inverse Shiryaev problem, 2021, 21 pp., arXiv: 2106.11573

[16] G. O. Roberts, “Asymptotic approximations for Brownian motion boundary hitting times”, Ann. Probab., 19:4 (1991), 1689–1731 | DOI | MR | Zbl

[17] C. Villani, Topics in optimal transportation, Grad. Stud. Math., 58, Amer. Math. Soc., Providence, RI, 2003, xvi+370 pp. | DOI | MR | Zbl