Uniqueness of the inverse first-passage time problem and the shape of the Shiryaev boundary
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 717-744
Voir la notice de l'article provenant de la source Math-Net.Ru
Given a distribution on the positive extended real line, the two-sided inverse first-passage time problem for Brownian motion asks for a function
such that the first passage time of this function by a reflected Brownian motion has the given distribution. We combine the
ideas of Ekström and Janson, which were developed within the scope of the one-sided inverse first-passage time problem, with the methods of De Masi et al., which were used in the context of free boundary problems, in order to give a different proof for the uniqueness for the two-sided inverse first-passage time problem by using a stochastic order relation. We provide criteria for qualitative properties of solutions of the inverse first-passage problem, which apply to the boundary corresponding to the exponential distribution.
Keywords:
inverse first-passage time, Brownian motion, Shiryaev problem, boundary crossing.
@article{TVP_2022_67_4_a4,
author = {A. Klump and M. Kolb},
title = {Uniqueness of the inverse first-passage time problem and the shape of the {Shiryaev} boundary},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {717--744},
publisher = {mathdoc},
volume = {67},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a4/}
}
TY - JOUR AU - A. Klump AU - M. Kolb TI - Uniqueness of the inverse first-passage time problem and the shape of the Shiryaev boundary JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 717 EP - 744 VL - 67 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a4/ LA - ru ID - TVP_2022_67_4_a4 ER -
A. Klump; M. Kolb. Uniqueness of the inverse first-passage time problem and the shape of the Shiryaev boundary. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 717-744. http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a4/