A guaranteed deterministic approach to superhedging: the relationship
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 688-716 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a guaranteed deterministic approach to the discrete-time superreplication problem in which it is required to cover a contingent liability on a written option in all feasible scenarios. These scenarios are described by a priori given compact sets depending on the price history: at each time instant, the price increments must lie in the corresponding compact sets. We assume no transaction costs. The problem statement is game-theoretic and leads to the Bellman–Isaacs equations in pure and mixed “market” strategies. In the case of no trading constraints, we study the relationship between the Bellman functions in the “deterministic” and “probabilistic” statements of the superhedging problem. As established under very general conditions, the “probabilistic” Bellman function does not exceed the “deterministic” counterpart. Sufficient conditions for their coincidence are found.
Keywords: guaranteed pricing, deterministic price dynamics, superhedging, American option, no arbitrage opportunities, the Bellman–Isaacs equations, set-valued mapping, mixed strategies, no trading constraints, risk-neutral measures, the generalized Snell envelope.
@article{TVP_2022_67_4_a3,
     author = {S. N. Smirnov},
     title = {A~guaranteed deterministic approach to superhedging: the relationship},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {688--716},
     year = {2022},
     volume = {67},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a3/}
}
TY  - JOUR
AU  - S. N. Smirnov
TI  - A guaranteed deterministic approach to superhedging: the relationship
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 688
EP  - 716
VL  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a3/
LA  - ru
ID  - TVP_2022_67_4_a3
ER  - 
%0 Journal Article
%A S. N. Smirnov
%T A guaranteed deterministic approach to superhedging: the relationship
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 688-716
%V 67
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a3/
%G ru
%F TVP_2022_67_4_a3
S. N. Smirnov. A guaranteed deterministic approach to superhedging: the relationship. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 688-716. http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a3/

[1] S. N. Smirnov, “A guaranteed deterministic approach to superhedging: financial market model, trading constraints, and the Bellman–Isaacs equations”, Autom. Remote Control, 82:4 (2021), 722–743 | DOI | MR | Zbl

[2] S. N. Smirnov, “A guaranteed deterministic approach to superhedging: no arbitrage properties of the market”, Autom. Remote Control, 82:1 (2021), 172–187 | DOI | MR | Zbl

[3] S. N. Smirnov, “Guaranteed deterministic approach to superhedging: the semicontinuity and continuity properties of solutions of the Bellman–Isaacs equations”, Autom. Remote Control, 82:11 (2021), 2024–2040 | DOI | MR | Zbl

[4] S. N. Smirnov, “Guaranteed deterministic approach to superhedging: Lipschitz properties of solutions of the Bellman–Isaacs equations”, Frontiers of dynamic games, Static Dyn. Game Theory Found. Appl., Birkhäuser/Springer, Cham, 2019, 267–288 | DOI | MR | Zbl

[5] S. N. Smirnov, “Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: smeshannye strategii i igrovoe ravnovesie”, MTIP, 12:1 (2020), 60–90 | MR | Zbl

[6] S. N. Smirnov, “A guaranteed deterministic approach to superhedging: a game equilibrium in the case of no trading constraints”, J. Math. Sci. (N.Y.), 248:1 (2020), 105–115 | DOI | MR

[7] S. N. Smirnov, “Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: naibolee neblagopriyatnye stsenarii povedeniya rynka i problema momentov”, MTIP, 12:3 (2020), 50–88 | MR

[8] P. Bernhard, J. C. Engwerda, B. Roorda, J. M. Schumacher, V. Kolokoltsov, P. Saint-Pierre, J.-P. Aubin, The interval market model in mathematical finance: game-theoretic methods, Static Dyn. Game Theory Found. Appl., Birkhäuser/Springer, New York, 2013, xvi+346 pp. | DOI | MR | Zbl

[9] Shouchuan Hu, N. S. Papageorgiou, Handbook of multivalued analysis, v. I, Math. Appl., 419, Theory, Kluwer Acad. Publ., Dordrecht, 1997, xvi+964 pp. | MR | Zbl

[10] H. Kneser, “Sur un théorème fondamental de la théorie des jeux”, C. R. Acad. Sci. Paris, 234 (1952), 2418–2420 | MR | Zbl

[11] S. N. Smirnov, “General theorem on a finite support of mixed strategy in the theory of zero-sum games”, Dokl. Math., 97:3 (2018), 215–218 | DOI | DOI | MR | Zbl

[12] J. Jacod, A. N. Shiryaev, “Local martingales and the fundamental asset pricing theorems in the discrete-time case”, Finance Stoch., 2:3 (1998), 259–273 | DOI | MR | Zbl

[13] L. C. G. Rogers, “Equivalent martingale measures and no-arbitrage”, Stochastics Stochastics Rep., 51:1-2 (1994), 41–49 | DOI | MR | Zbl

[14] A. N. Shiryaev, “Part 2. Theory”, Essentials of stochastic finance. Facts, models, theory, Adv. Ser. Stat. Sci. Appl. Probab., 3, World Sci. Publ., River Edge, NJ, 1999, 382–802 | DOI | MR | Zbl

[15] F. Esscher, “On the probability function in the collective theory of risk”, Skand. Aktuarietidskr., 1932:3 (1932), 175–195 | DOI | Zbl

[16] N. N. Čencov, Statistical decision rules and optimal inference, Transl. Math. Monogr., 53, Amer. Math. Soc., Providence, RI, 1982, viii+499 pp. | MR | MR | Zbl

[17] R. T. Rockafellar, Convex analysis, Princeton Math. Ser., 28, Princeton Univ. Press, Princeton, NJ, 1970, xviii+451 pp. | MR | Zbl | Zbl

[18] H. Cramér, “Sur un nouveau théorème-limite de la théorie des probabilités”, Actualités Sci. Indust., 736, Hermann Cie, Paris, 1938, 5–23 | Zbl

[19] A. N. Shiryaev, Probability–2, Grad. Texts in Math., 95, 3rd ed., Springer, New York, 2019, x+348 pp. | DOI | MR | Zbl

[20] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934, xii+314 pp. | MR | MR | Zbl

[21] H. Föllmer, A. Schied, Stochastic finance. An introduction in discrete time, De Gruyter Textbook, 4th rev. ed., De Gruyter, Berlin, 2016, xii+596 pp. | DOI | MR | Zbl

[22] H. F{ö}llmer, Yu. M. Kabanov, “Optional decomposition and Lagrange multipliers”, Finance Stoch., 2:1 (1998), 69–81 | DOI | MR | Zbl

[23] C. J. Himmelberg, “Measurable relations”, Fund. Math., 87:1 (1975), 53–72 | DOI | MR | Zbl