@article{TVP_2022_67_4_a3,
author = {S. N. Smirnov},
title = {A~guaranteed deterministic approach to superhedging: the relationship},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {688--716},
year = {2022},
volume = {67},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a3/}
}
S. N. Smirnov. A guaranteed deterministic approach to superhedging: the relationship. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 688-716. http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a3/
[1] S. N. Smirnov, “A guaranteed deterministic approach to superhedging: financial market model, trading constraints, and the Bellman–Isaacs equations”, Autom. Remote Control, 82:4 (2021), 722–743 | DOI | MR | Zbl
[2] S. N. Smirnov, “A guaranteed deterministic approach to superhedging: no arbitrage properties of the market”, Autom. Remote Control, 82:1 (2021), 172–187 | DOI | MR | Zbl
[3] S. N. Smirnov, “Guaranteed deterministic approach to superhedging: the semicontinuity and continuity properties of solutions of the Bellman–Isaacs equations”, Autom. Remote Control, 82:11 (2021), 2024–2040 | DOI | MR | Zbl
[4] S. N. Smirnov, “Guaranteed deterministic approach to superhedging: Lipschitz properties of solutions of the Bellman–Isaacs equations”, Frontiers of dynamic games, Static Dyn. Game Theory Found. Appl., Birkhäuser/Springer, Cham, 2019, 267–288 | DOI | MR | Zbl
[5] S. N. Smirnov, “Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: smeshannye strategii i igrovoe ravnovesie”, MTIP, 12:1 (2020), 60–90 | MR | Zbl
[6] S. N. Smirnov, “A guaranteed deterministic approach to superhedging: a game equilibrium in the case of no trading constraints”, J. Math. Sci. (N.Y.), 248:1 (2020), 105–115 | DOI | MR
[7] S. N. Smirnov, “Garantirovannyi deterministskii podkhod k superkhedzhirovaniyu: naibolee neblagopriyatnye stsenarii povedeniya rynka i problema momentov”, MTIP, 12:3 (2020), 50–88 | MR
[8] P. Bernhard, J. C. Engwerda, B. Roorda, J. M. Schumacher, V. Kolokoltsov, P. Saint-Pierre, J.-P. Aubin, The interval market model in mathematical finance: game-theoretic methods, Static Dyn. Game Theory Found. Appl., Birkhäuser/Springer, New York, 2013, xvi+346 pp. | DOI | MR | Zbl
[9] Shouchuan Hu, N. S. Papageorgiou, Handbook of multivalued analysis, v. I, Math. Appl., 419, Theory, Kluwer Acad. Publ., Dordrecht, 1997, xvi+964 pp. | MR | Zbl
[10] H. Kneser, “Sur un théorème fondamental de la théorie des jeux”, C. R. Acad. Sci. Paris, 234 (1952), 2418–2420 | MR | Zbl
[11] S. N. Smirnov, “General theorem on a finite support of mixed strategy in the theory of zero-sum games”, Dokl. Math., 97:3 (2018), 215–218 | DOI | DOI | MR | Zbl
[12] J. Jacod, A. N. Shiryaev, “Local martingales and the fundamental asset pricing theorems in the discrete-time case”, Finance Stoch., 2:3 (1998), 259–273 | DOI | MR | Zbl
[13] L. C. G. Rogers, “Equivalent martingale measures and no-arbitrage”, Stochastics Stochastics Rep., 51:1-2 (1994), 41–49 | DOI | MR | Zbl
[14] A. N. Shiryaev, “Part 2. Theory”, Essentials of stochastic finance. Facts, models, theory, Adv. Ser. Stat. Sci. Appl. Probab., 3, World Sci. Publ., River Edge, NJ, 1999, 382–802 | DOI | MR | Zbl
[15] F. Esscher, “On the probability function in the collective theory of risk”, Skand. Aktuarietidskr., 1932:3 (1932), 175–195 | DOI | Zbl
[16] N. N. Čencov, Statistical decision rules and optimal inference, Transl. Math. Monogr., 53, Amer. Math. Soc., Providence, RI, 1982, viii+499 pp. | MR | MR | Zbl
[17] R. T. Rockafellar, Convex analysis, Princeton Math. Ser., 28, Princeton Univ. Press, Princeton, NJ, 1970, xviii+451 pp. | MR | Zbl | Zbl
[18] H. Cramér, “Sur un nouveau théorème-limite de la théorie des probabilités”, Actualités Sci. Indust., 736, Hermann Cie, Paris, 1938, 5–23 | Zbl
[19] A. N. Shiryaev, Probability–2, Grad. Texts in Math., 95, 3rd ed., Springer, New York, 2019, x+348 pp. | DOI | MR | Zbl
[20] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934, xii+314 pp. | MR | MR | Zbl
[21] H. Föllmer, A. Schied, Stochastic finance. An introduction in discrete time, De Gruyter Textbook, 4th rev. ed., De Gruyter, Berlin, 2016, xii+596 pp. | DOI | MR | Zbl
[22] H. F{ö}llmer, Yu. M. Kabanov, “Optional decomposition and Lagrange multipliers”, Finance Stoch., 2:1 (1998), 69–81 | DOI | MR | Zbl
[23] C. J. Himmelberg, “Measurable relations”, Fund. Math., 87:1 (1975), 53–72 | DOI | MR | Zbl