On optimal linear regulator with polynomial process of external excitations
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 672-687

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear control system over an infinite time-horizon is considered, where external excitations are defined as polynomials based on a time-varying Ornstein–Uhlenbeck process. An optimal control law with respect to long-run average type criteria is established. It is shown that the optimal control has the form of a linear feedback law, where the affine term satisfies a backward linear stochastic differential equation. The normalizing functions in the optimality criteria depend on the stability rate of the dynamic equation for the Ornstein–Uhlenbeck process.
Keywords: linear regulator, Ornstein–Uhlenbeck process, pathwise optimality.
Mots-clés : polynomial process
@article{TVP_2022_67_4_a2,
     author = {E. S. Palamarchuk},
     title = {On optimal linear regulator with polynomial process of external excitations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {672--687},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a2/}
}
TY  - JOUR
AU  - E. S. Palamarchuk
TI  - On optimal linear regulator with polynomial process of external excitations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 672
EP  - 687
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a2/
LA  - ru
ID  - TVP_2022_67_4_a2
ER  - 
%0 Journal Article
%A E. S. Palamarchuk
%T On optimal linear regulator with polynomial process of external excitations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 672-687
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a2/
%G ru
%F TVP_2022_67_4_a2
E. S. Palamarchuk. On optimal linear regulator with polynomial process of external excitations. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 672-687. http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a2/