On optimal linear regulator with polynomial process of external excitations
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 672-687 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A linear control system over an infinite time-horizon is considered, where external excitations are defined as polynomials based on a time-varying Ornstein–Uhlenbeck process. An optimal control law with respect to long-run average type criteria is established. It is shown that the optimal control has the form of a linear feedback law, where the affine term satisfies a backward linear stochastic differential equation. The normalizing functions in the optimality criteria depend on the stability rate of the dynamic equation for the Ornstein–Uhlenbeck process.
Keywords: linear regulator, Ornstein–Uhlenbeck process, pathwise optimality.
Mots-clés : polynomial process
@article{TVP_2022_67_4_a2,
     author = {E. S. Palamarchuk},
     title = {On optimal linear regulator with polynomial process of external excitations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {672--687},
     year = {2022},
     volume = {67},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a2/}
}
TY  - JOUR
AU  - E. S. Palamarchuk
TI  - On optimal linear regulator with polynomial process of external excitations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 672
EP  - 687
VL  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a2/
LA  - ru
ID  - TVP_2022_67_4_a2
ER  - 
%0 Journal Article
%A E. S. Palamarchuk
%T On optimal linear regulator with polynomial process of external excitations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 672-687
%V 67
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a2/
%G ru
%F TVP_2022_67_4_a2
E. S. Palamarchuk. On optimal linear regulator with polynomial process of external excitations. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 672-687. http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a2/

[1] S. Benfratello, G. Muscolino, “Filter approach to the stochastic analysis of MDOF wind-excited structures”, Probabilistic Eng. Mech., 14:4 (1999), 311–321 | DOI

[2] M. P. Tucci, D. A. Kendrick, H. M. Amman, “Expected optimal feedback with time-varying parameters”, Comput. Econom., 42:3 (2013), 351–371 | DOI

[3] R. N. Iyengar, O. R. Jaiswal, “A new model for non-Gaussian random excitations”, Probabilistic Eng. Mech., 8:3-4 (1993), 281–287 | DOI

[4] J. M. Luck, A. Mehta, “Dynamics at the angle of repose: jamming, bistability, and collapse”, J. Stat. Mech. Theory Exp., 2004:10 (2004), P10015, 16 pp. | DOI | Zbl

[5] T. Ware, “Polynomial processes for power prices”, Appl. Math. Finance, 26:5 (2019), 453–474 | DOI | MR | Zbl

[6] F. Lillo, R. N. Mantegna, “Drift-controlled anomalous diffusion: a solvable Gaussian model”, Phys. Rev. E, 61:5 (2000), R4675, 4 pp. | DOI

[7] D. Chakraborty, “Persistence of a Brownian particle in a time-dependent potential”, Phys. Rev. E, 85:5 (2012), 051101, 7 pp. | DOI

[8] E. S. Palamarchuk, “On upper functions for anomalous diffusions governed by time-varying Ornstein–Uhlenbeck process”, Theory Probab. Appl., 64:2 (2019), 209–228 | DOI | DOI | MR | Zbl

[9] M. Grigoriu, S. T. Ariaratnam, “Response of linear systems to polynomials of Gaussian processes”, Trans. ASME J. Appl. Mech., 55:4 (1988), 905–910 | DOI | MR | Zbl

[10] L. Socha, C. Proppe, “Control of the Duffing oscillator under non-Gaussian external excitation”, Eur. J. Mech. A Solids, 21:6 (2002), 1069–1082 | DOI | MR | Zbl

[11] Shuping Chen, Xun Yu Zhou, “Stochastic linear quadratic regulators with indefinite control weight costs. II”, SIAM J. Control Optim., 39:4 (2000), 1065–1081 | DOI | MR | Zbl

[12] E. Palamarchuk, “On infinite time linear-quadratic Gaussian control of inhomogeneous systems”, 2016 European Control Conference (ECC), IEEE, 2016, 2477–2482 | DOI

[13] R. A. Horn, C. R. Johnson, Matrix analysis, 2nd ed., Cambridge Univ. Press, Cambridge, 2013, xviii+643 pp. | MR | MR | Zbl | Zbl

[14] H. Kwakernaak, R. Sivan, Linear optimal control systems, Wiley-Interscience [John Wiley Sons], New York–London–Sydney, xxv+575 pp. | MR | Zbl

[15] M. Fuhrman, G. Tessitore, “Infinite horizon backward stochastic differential equations and elliptic equations in Hilbert spaces”, Ann. Probab., 32:1B (2004), 607–660 | DOI | MR | Zbl

[16] Jingrui Sun, Jiongmin Yong, Stochastic linear-quadratic optimal control theory: open-loop and closed-loop solutions, SpringerBriefs Math., Cham, New York, 2020, xiv+120 pp. | DOI | MR | Zbl

[17] Hui-Hsiung Kuo, Introduction to stochastic integration, Universitext, Springer, New York, 2006, xiv+278 pp. | DOI | MR | Zbl

[18] H. Cramér, M. R. Leadbetter, Stationary and related stochastic processes. Sample function properties and their applications, John Wiley Sons, Inc., New York–London–Sydney, 1967, xii+348 pp. | MR | Zbl | Zbl

[19] Ju-Yi Yen, M. Yor, Local times and excursion theory for Brownian motion. A tale of Wiener and Itô measures, Lecture Notes in Math., 2088, Springer, Cham, 2013, x+135 pp. | DOI | MR | Zbl

[20] Jia-gang Wang, “A law of the iterated logarithm for stochastic integrals”, Stochastic Process. Appl., 47:2 (1993), 215–228 | DOI | MR | Zbl

[21] N. Balakrishnan, Chin-Diew Lai, Continuous bivariate distributions, 2nd ed., Springer, Dordrecht, 2009, xxxvi+684 pp. | DOI | MR | Zbl

[22] E. S. Palamarchuk, “Asymptotic behavior of the solution to a linear stochastic differential equation and almost sure optimality for a controlled stochastic process”, Comput. Math. Math. Phys., 54:1 (2014), 83–96 | DOI | DOI | MR | Zbl

[23] V. Strassen, “An invariance principle for the law of the iterated logarithm”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 3:3 (1964), 211–226 | DOI | MR | Zbl

[24] E. S. Palamarchuk, “Otsenka riska v lineinykh ekonomicheskikh sistemakh pri otritsatelnykh vremennykh predpochteniyakh”, Ekonomika i matematicheskie metody, 49:3 (2013), 99–116