On optimal linear regulator with polynomial process of external excitations
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 672-687
Voir la notice de l'article provenant de la source Math-Net.Ru
A linear control system over an infinite time-horizon is considered, where
external excitations are defined as polynomials based on a time-varying
Ornstein–Uhlenbeck process. An optimal control law with respect to long-run
average type criteria is established. It is shown that the optimal control has
the form of a linear feedback law, where the affine term satisfies a backward
linear stochastic differential equation. The normalizing functions in the
optimality criteria depend on the stability rate of the dynamic equation for the
Ornstein–Uhlenbeck process.
Keywords:
linear regulator, Ornstein–Uhlenbeck process, pathwise optimality.
Mots-clés : polynomial process
Mots-clés : polynomial process
@article{TVP_2022_67_4_a2,
author = {E. S. Palamarchuk},
title = {On optimal linear regulator with polynomial process of external excitations},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {672--687},
publisher = {mathdoc},
volume = {67},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a2/}
}
TY - JOUR AU - E. S. Palamarchuk TI - On optimal linear regulator with polynomial process of external excitations JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 672 EP - 687 VL - 67 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a2/ LA - ru ID - TVP_2022_67_4_a2 ER -
E. S. Palamarchuk. On optimal linear regulator with polynomial process of external excitations. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 672-687. http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a2/