Atypical population size in a~two-type decomposable branching process
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 649-671
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a Galton–Watson branching process with particles of two
types in which particles of type one produce both particles of types one and
two, and particles of type two generate offsprings of only type two. It is
known that if both types are critical, then, for a process that is initiated
at time $0$ by a single type-one particle, the number of particles of type
two at time $n$ (provided that the process is not degenerate by this time) is
proportional to $n$. We find the asymptotics of the probability that the
number of type-two particles at time $n$ is of the order $o(n) $ (provided
that the process is not degenerate by this time).
Keywords:
reduced branching process, population size, local limit theorem.
@article{TVP_2022_67_4_a1,
author = {V. A. Vatutin and E. E. D'yakonova},
title = {Atypical population size in a~two-type decomposable branching process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {649--671},
publisher = {mathdoc},
volume = {67},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a1/}
}
TY - JOUR AU - V. A. Vatutin AU - E. E. D'yakonova TI - Atypical population size in a~two-type decomposable branching process JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2022 SP - 649 EP - 671 VL - 67 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a1/ LA - ru ID - TVP_2022_67_4_a1 ER -
V. A. Vatutin; E. E. D'yakonova. Atypical population size in a~two-type decomposable branching process. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 649-671. http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a1/