@article{TVP_2022_67_4_a1,
author = {V. A. Vatutin and E. E. D'yakonova},
title = {Atypical population size in a~two-type decomposable branching process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {649--671},
year = {2022},
volume = {67},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a1/}
}
V. A. Vatutin; E. E. D'yakonova. Atypical population size in a two-type decomposable branching process. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 649-671. http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a1/
[1] V. A. Vatutin, “The structure of the decomposable reduced branching processes. I. Finite-dimensional distributions”, Theory Probab. Appl., 59:4 (2015), 641–662 | DOI | MR | Zbl
[2] V. A. Vatutin, “A conditional functional limit theorem for decomposable branching processes with two types of particles”, Math. Notes, 101:5 (2017), 778–789 | DOI | DOI | MR | Zbl
[3] A. V. Karpenko, S. V. Nagaev, “Limit theorems for the total number of descendants for the Galton–Watson branching process”, Theory Probab. Appl., 38:3 (1993), 433–455 | DOI | MR | Zbl
[4] V. F. Kolchin, Random mappings, Transl. Ser. Math. Engrg., Optimization Software, Inc., Publications Division, New York, 1986, xiv+207 pp. | MR | MR | Zbl | Zbl
[5] S. V. Nagaev, V. I. Vakhtel, “On the local limit theorem for a critical Galton–Watson process”, Theory Probab. Appl., 50:3 (2006), 400–419 | DOI | DOI | MR | Zbl
[6] B. A. Sewastjanow, Verzweigungsprozesse, Math. Lehrbücher Monogr. II. Abt. Math. Monogr., 34, Akademie-Verlag, Berlin, 1974, xi+326 pp. | MR | MR | Zbl | Zbl
[7] W. Feller, An introduction to probability theory and its applications, v. II, 2nd ed., John Wiley Sons, Inc., New York–London–Sydney, 2008, 700 pp. | MR | MR | Zbl | Zbl
[8] K. B. Athreya, P. E. Ney, Branching processes, Grundlehren Math. Wiss., 196, Springer, Berlin, 1972, xi+287 pp. | DOI | MR | Zbl
[9] J. Foster, P. Ney, “Decomposable critical multi-type branching processes”, Invited paper for Mahalanobis Memorial symposium (Calcutta), Sankhyā Ser. A, 38:1 (1976), 28–37 | MR | Zbl
[10] J. Foster, P. Ney, “Limit laws for decomposable critical branching processes”, Z. Wahrsch. Verw. Gebiete, 46:1 (1978), 13–43 | DOI | MR | Zbl