Atypical population size in a two-type decomposable branching process
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 649-671 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a Galton–Watson branching process with particles of two types in which particles of type one produce both particles of types one and two, and particles of type two generate offsprings of only type two. It is known that if both types are critical, then, for a process that is initiated at time $0$ by a single type-one particle, the number of particles of type two at time $n$ (provided that the process is not degenerate by this time) is proportional to $n$. We find the asymptotics of the probability that the number of type-two particles at time $n$ is of the order $o(n) $ (provided that the process is not degenerate by this time).
Keywords: reduced branching process, population size, local limit theorem.
@article{TVP_2022_67_4_a1,
     author = {V. A. Vatutin and E. E. D'yakonova},
     title = {Atypical population size in a~two-type decomposable branching process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {649--671},
     year = {2022},
     volume = {67},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a1/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - E. E. D'yakonova
TI  - Atypical population size in a two-type decomposable branching process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 649
EP  - 671
VL  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a1/
LA  - ru
ID  - TVP_2022_67_4_a1
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A E. E. D'yakonova
%T Atypical population size in a two-type decomposable branching process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 649-671
%V 67
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a1/
%G ru
%F TVP_2022_67_4_a1
V. A. Vatutin; E. E. D'yakonova. Atypical population size in a two-type decomposable branching process. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 649-671. http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a1/

[1] V. A. Vatutin, “The structure of the decomposable reduced branching processes. I. Finite-dimensional distributions”, Theory Probab. Appl., 59:4 (2015), 641–662 | DOI | MR | Zbl

[2] V. A. Vatutin, “A conditional functional limit theorem for decomposable branching processes with two types of particles”, Math. Notes, 101:5 (2017), 778–789 | DOI | DOI | MR | Zbl

[3] A. V. Karpenko, S. V. Nagaev, “Limit theorems for the total number of descendants for the Galton–Watson branching process”, Theory Probab. Appl., 38:3 (1993), 433–455 | DOI | MR | Zbl

[4] V. F. Kolchin, Random mappings, Transl. Ser. Math. Engrg., Optimization Software, Inc., Publications Division, New York, 1986, xiv+207 pp. | MR | MR | Zbl | Zbl

[5] S. V. Nagaev, V. I. Vakhtel, “On the local limit theorem for a critical Galton–Watson process”, Theory Probab. Appl., 50:3 (2006), 400–419 | DOI | DOI | MR | Zbl

[6] B. A. Sewastjanow, Verzweigungsprozesse, Math. Lehrbücher Monogr. II. Abt. Math. Monogr., 34, Akademie-Verlag, Berlin, 1974, xi+326 pp. | MR | MR | Zbl | Zbl

[7] W. Feller, An introduction to probability theory and its applications, v. II, 2nd ed., John Wiley Sons, Inc., New York–London–Sydney, 2008, 700 pp. | MR | MR | Zbl | Zbl

[8] K. B. Athreya, P. E. Ney, Branching processes, Grundlehren Math. Wiss., 196, Springer, Berlin, 1972, xi+287 pp. | DOI | MR | Zbl

[9] J. Foster, P. Ney, “Decomposable critical multi-type branching processes”, Invited paper for Mahalanobis Memorial symposium (Calcutta), Sankhyā Ser. A, 38:1 (1976), 28–37 | MR | Zbl

[10] J. Foster, P. Ney, “Limit laws for decomposable critical branching processes”, Z. Wahrsch. Verw. Gebiete, 46:1 (1978), 13–43 | DOI | MR | Zbl