Mots-clés : stable distributions.
@article{TVP_2022_67_4_a0,
author = {I. A. Alekseev},
title = {Stable random variables with complex stability index, {II}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {627--648},
year = {2022},
volume = {67},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a0/}
}
I. A. Alekseev. Stable random variables with complex stability index, II. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 627-648. http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a0/
[1] I. A. Alekseev, “Ustoichivye sluchainye velichiny s kompleksnym indeksom ustoichivosti, I”, Teoriya veroyatn. i ee primen., 67:3 (2022), 421–442 | DOI
[2] P. Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York–London–Sydney, 1968, xii+253 pp. | MR | MR | Zbl
[3] E. Feldheim, Étude de la stabilité des lois de probabilité, Thèses de l'entre-deux-guerres, 187, 1937, 64 pp. | MR
[4] I. I. Gikhman, A. V. Skorokhod, Introduction to the theory of random processes, W. B. Saunders Co., Philadelphia, PA–London–Toronto, ON, 1969, xiii+516 pp. | MR | MR | Zbl
[5] B. V. Gnedenko, A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley Publishing Company, Inc., Cambridge, MA, 1954, ix+264 pp. | MR | MR | Zbl
[6] I. A. Ibragimov, Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971, 443 pp. | MR | MR | Zbl | Zbl
[7] J. F. C. Kingman, Poisson processes, Oxford Stud. Probab., 3, The Clarendon Press, Oxford Univ. Press, New York, 1993, viii+104 pp. | MR | Zbl
[8] J. Lamperti, Probability. A survey of the mathematical theory, Math. Monogr. Ser., W. A. Benjamin, Inc., New York–Amsterdam, 1966, x+150 pp. | MR | MR | Zbl | Zbl
[9] P. Lévy, “Sur les intégrales dont les éléments sont des variables aléatoires indépendantes”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2), III:3-4 (1934), 337–366 | MR | Zbl
[10] M. A. Lifshits, “Invariant measures generated by random fields with independent values”, Funct. Anal. Appl., 19:4 (1985), 329–330 | DOI | MR | Zbl
[11] M. M. Meerschaert, H.-P. Scheffler, Limit distributions for sums of independent random vectors. Heavy tails in theory and practice, Wiley Ser. Probab. Statist. Probab. Statist., John Wiley Sons, Inc., New York, 2001, xvi+484 pp. | MR | Zbl
[12] M. V. Platonova, “Symmetric $\alpha$-stable distributions with noninteger $\alpha>2$ and related stochastic processes”, J. Math. Sci. (N.Y.), 225:5 (2017), 791–801 | DOI | MR | Zbl
[13] E. L. Rvačeva, “On domains of attraction of multi-dimensional distributions”, Selected translations in mathematical statistics and probability, v. 2, Amer. Math. Soc., Providence, RI, 1962, 183–205 | MR | MR | Zbl
[14] G. N. Sakovich, Mnogomernye ustoichivye raspredeleniya, Diss. ... kand. fiz.-matem. nauk, In-t matematiki AN USSR, Kiev, 1965
[15] K. Sato, Lévy processes and infinitely divisible distributions, Transl. from the Japan., Cambridge Stud. Adv. Math., 68, 2nd rev. ed., Cambridge Univ. Press, Cambridge, 2013, xiv+521 pp. | MR | Zbl
[16] M. Sharpe, “Operator-stable probability distributions on vector groups”, Trans. Amer. Math. Soc., 136 (1969), 51–65 | DOI | MR | Zbl
[17] A. V. Skorokhod, Random processes with independent increments, Math. Appl. (Soviet Ser.), 47, Kluwer Acad. Publ., Dordrecht, 1991, xii+279 pp. | MR | MR | Zbl | Zbl
[18] N. V. Smorodina, M. M. Faddeev, “Theorems on convergence of stochastic integrals distributions to signed measures and local limit theorems for large deviations”, J. Math. Sci. (N.Y.), 167:4 (2010), 550–565 | DOI | MR | Zbl
[19] N. V. Smorodina, M. M. Faddeev, “The Lévy–Khinchin representation of the one class of signed stable measures and some its applications”, Acta Appl. Math., 110:3 (2010), 1289–1308 | DOI | MR | Zbl
[20] A. M. Vershik, I. M. Gel'fand, M. I. Graev, “A commutative model of representation of the group of flows $\operatorname{SL}(2,\mathbb{R})^X$ that is connected with a unipotent subgroup”, Funct. Anal. Appl., 17:2 (1983), 137–139 | DOI | MR | Zbl
[21] V. M. Zolotarev, One-dimensional stable distributions, Transl. Math. Monogr., 65, Amer. Math. Soc., Providence, RI, 1986, x+284 pp. | DOI | MR | MR | Zbl | Zbl