Stable random variables with complex stability index, II
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 627-648 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper, which is a continuation of [I. A. Alexeev, Theory Probab. Appl., 67 (2022), pp. 335–351], is concerned with $\alpha$-stable distributions with complex stability index $\alpha$. Sufficient conditions for membership in the domain of attraction of $\alpha$-stable random variables (r.v.'s) are given, and $\alpha$-stable Lévy processes and the corresponding semigroups of operators are constructed. Necessary and sufficient conditions are given for membership in the class of limit laws for sums of independent and identically distributed (i.i.d.) complex r.v.'s with complex normalization and centering.
Keywords: infinitely divisible distributions, operator-stable laws, limit theorems
Mots-clés : stable distributions.
@article{TVP_2022_67_4_a0,
     author = {I. A. Alekseev},
     title = {Stable random variables with complex stability index, {II}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {627--648},
     year = {2022},
     volume = {67},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a0/}
}
TY  - JOUR
AU  - I. A. Alekseev
TI  - Stable random variables with complex stability index, II
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 627
EP  - 648
VL  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a0/
LA  - ru
ID  - TVP_2022_67_4_a0
ER  - 
%0 Journal Article
%A I. A. Alekseev
%T Stable random variables with complex stability index, II
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 627-648
%V 67
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a0/
%G ru
%F TVP_2022_67_4_a0
I. A. Alekseev. Stable random variables with complex stability index, II. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 4, pp. 627-648. http://geodesic.mathdoc.fr/item/TVP_2022_67_4_a0/

[1] I. A. Alekseev, “Ustoichivye sluchainye velichiny s kompleksnym indeksom ustoichivosti, I”, Teoriya veroyatn. i ee primen., 67:3 (2022), 421–442 | DOI

[2] P. Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York–London–Sydney, 1968, xii+253 pp. | MR | MR | Zbl

[3] E. Feldheim, Étude de la stabilité des lois de probabilité, Thèses de l'entre-deux-guerres, 187, 1937, 64 pp. | MR

[4] I. I. Gikhman, A. V. Skorokhod, Introduction to the theory of random processes, W. B. Saunders Co., Philadelphia, PA–London–Toronto, ON, 1969, xiii+516 pp. | MR | MR | Zbl

[5] B. V. Gnedenko, A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley Publishing Company, Inc., Cambridge, MA, 1954, ix+264 pp. | MR | MR | Zbl

[6] I. A. Ibragimov, Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971, 443 pp. | MR | MR | Zbl | Zbl

[7] J. F. C. Kingman, Poisson processes, Oxford Stud. Probab., 3, The Clarendon Press, Oxford Univ. Press, New York, 1993, viii+104 pp. | MR | Zbl

[8] J. Lamperti, Probability. A survey of the mathematical theory, Math. Monogr. Ser., W. A. Benjamin, Inc., New York–Amsterdam, 1966, x+150 pp. | MR | MR | Zbl | Zbl

[9] P. Lévy, “Sur les intégrales dont les éléments sont des variables aléatoires indépendantes”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2), III:3-4 (1934), 337–366 | MR | Zbl

[10] M. A. Lifshits, “Invariant measures generated by random fields with independent values”, Funct. Anal. Appl., 19:4 (1985), 329–330 | DOI | MR | Zbl

[11] M. M. Meerschaert, H.-P. Scheffler, Limit distributions for sums of independent random vectors. Heavy tails in theory and practice, Wiley Ser. Probab. Statist. Probab. Statist., John Wiley Sons, Inc., New York, 2001, xvi+484 pp. | MR | Zbl

[12] M. V. Platonova, “Symmetric $\alpha$-stable distributions with noninteger $\alpha>2$ and related stochastic processes”, J. Math. Sci. (N.Y.), 225:5 (2017), 791–801 | DOI | MR | Zbl

[13] E. L. Rvačeva, “On domains of attraction of multi-dimensional distributions”, Selected translations in mathematical statistics and probability, v. 2, Amer. Math. Soc., Providence, RI, 1962, 183–205 | MR | MR | Zbl

[14] G. N. Sakovich, Mnogomernye ustoichivye raspredeleniya, Diss. ... kand. fiz.-matem. nauk, In-t matematiki AN USSR, Kiev, 1965

[15] K. Sato, Lévy processes and infinitely divisible distributions, Transl. from the Japan., Cambridge Stud. Adv. Math., 68, 2nd rev. ed., Cambridge Univ. Press, Cambridge, 2013, xiv+521 pp. | MR | Zbl

[16] M. Sharpe, “Operator-stable probability distributions on vector groups”, Trans. Amer. Math. Soc., 136 (1969), 51–65 | DOI | MR | Zbl

[17] A. V. Skorokhod, Random processes with independent increments, Math. Appl. (Soviet Ser.), 47, Kluwer Acad. Publ., Dordrecht, 1991, xii+279 pp. | MR | MR | Zbl | Zbl

[18] N. V. Smorodina, M. M. Faddeev, “Theorems on convergence of stochastic integrals distributions to signed measures and local limit theorems for large deviations”, J. Math. Sci. (N.Y.), 167:4 (2010), 550–565 | DOI | MR | Zbl

[19] N. V. Smorodina, M. M. Faddeev, “The Lévy–Khinchin representation of the one class of signed stable measures and some its applications”, Acta Appl. Math., 110:3 (2010), 1289–1308 | DOI | MR | Zbl

[20] A. M. Vershik, I. M. Gel'fand, M. I. Graev, “A commutative model of representation of the group of flows $\operatorname{SL}(2,\mathbb{R})^X$ that is connected with a unipotent subgroup”, Funct. Anal. Appl., 17:2 (1983), 137–139 | DOI | MR | Zbl

[21] V. M. Zolotarev, One-dimensional stable distributions, Transl. Math. Monogr., 65, Amer. Math. Soc., Providence, RI, 1986, x+284 pp. | DOI | MR | MR | Zbl | Zbl