Another proof of a~Sakhanenko theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 591-596

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an analytic proof of Sakhanenko's theorem on the strong law of large numbers. Our arguments are based on the method of characteristic functions: under the Lindeberg-type condition, the expectation of the absolute value of the sum of independent random variables (r.v.'s) tends to zero. In our proof, we represent the expectation of the absolute value of an r.v. in terms of the corresponding characteristic function.
Keywords: random variable, characteristic function, strong law of large numbers.
@article{TVP_2022_67_3_a9,
     author = {Sh. K. Formanov},
     title = {Another proof of {a~Sakhanenko} theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {591--596},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a9/}
}
TY  - JOUR
AU  - Sh. K. Formanov
TI  - Another proof of a~Sakhanenko theorem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 591
EP  - 596
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a9/
LA  - ru
ID  - TVP_2022_67_3_a9
ER  - 
%0 Journal Article
%A Sh. K. Formanov
%T Another proof of a~Sakhanenko theorem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 591-596
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a9/
%G ru
%F TVP_2022_67_3_a9
Sh. K. Formanov. Another proof of a~Sakhanenko theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 591-596. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a9/