@article{TVP_2022_67_3_a8,
author = {G. A. Afanasiev},
title = {Queueing systems with vacations, interruptions, and delays in device operation},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {579--590},
year = {2022},
volume = {67},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a8/}
}
G. A. Afanasiev. Queueing systems with vacations, interruptions, and delays in device operation. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 579-590. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a8/
[1] Y. Levy, U. Yechiali, “Utilization of idle time in an $M/G/1$ queueing system”, Manag. Sci., 22:2 (1975), 202–211 | DOI | Zbl
[2] B. T. Doshi, “Queueing systems with vacations — a survey”, Queueing Syst., 1:1 (1986), 29–66 | DOI | MR | Zbl
[3] B. T. Doshi, “Single-server queues with vacations”, Stochastic analysis of computer and communication systems, North-Holland, Amsterdam, 1990, 217–265 | MR | Zbl
[4] H. Takagi, Queueing analysis: a foundation of performance analysis, v. 1, Vacation and priority systems, Part 1, North-Holland Publishing Co., Amsterdam, 1991, xii+487 pp. | MR | Zbl
[5] Naishuo Tian, Zhe George Zhang, Vacation queueing models. Theory and applications, Internat. Ser. Oper. Res. Management Sci., 93, Spinger, New York, 2006, xii+385 pp. | DOI | MR | Zbl
[6] L. D. Servi, S. G. Finn, “$\mathrm{M}/\mathrm{M}/1$ queue with working vacations $(\mathrm{M}/\mathrm{M}/1/\mathrm{WV})$”, Performance Evaluation, 50:1 (2002), 41–52 | DOI
[7] Jihong Li, Naishuo Tian, “The $\mathrm{M}/\mathrm{M}/1$ queue with working vacations and vacation interruptions”, J. Syst. Sci. Syst. Eng., 16 (2007), 121–127 | DOI
[8] Ji-Hong Li, Nai-Shuo Tian, Zhan-You Ma, “Performance analysis of $\mathrm{GI}/\mathrm{M}/1$ queue with working vacations and vacation interruption”, Appl. Math. Model., 32:12 (2008), 2715–2730 | DOI | MR | Zbl
[9] Mian Zhang, Zhengting Hou, “Performance analysis of $\mathrm{M}/\mathrm{G}/1$ queue with working vacations and vacation interruption”, J. Comput. Appl. Math., 234:10 (2010), 2977–2985 | DOI | MR | Zbl
[10] C. Sreenivasan, S. R. Chakravarthy, A. Krishnamoorthy, “$MAP/PH/1$ queue with working vacations, vacation interruptions and $N$ policy”, Appl. Math. Model., 37:6 (2013), 3879–3893 | DOI | MR | Zbl
[11] O. C. Ibe, O. A. Isijola, “$\mathrm{M}/\mathrm{M}/1$ multiple vacation queueing systems with differentiated vacations”, Model. Simul. Eng., 2014 (2014), 158247, 7 pp. | DOI
[12] O. C. Ibe, “$\mathrm{M}/\mathrm{G}/1$ vacation queueing system with server timeout”, Amer. J. Oper. Res., 5:2 (2015), 77–88 | DOI
[13] G. A. Afanasyev, “A vacation queue $\mathrm{M}|\mathrm{G}|1$ with close-down times”, Theory Probab. Appl., 66:1 (2021), 1–14 | DOI | DOI | MR | Zbl
[14] D. R. Koks, V. L. Smit, Teoriya vosstanovleniya, Sov. radio, M., 1967, 299 pp. ; D. R. Cox, Renewal theory, Methuen Co., Ltd., London; John Wiley Sons, Inc., New York, 1962, ix+142 с. ; W. L. Smith, “Renewal theory and its ramifications”, J. Roy. Statist. Soc. Ser. B, 20:2 (1958), 243–302 | MR | Zbl | MR | Zbl | MR | Zbl
[15] B. V. Gnedenko, I. N. Kovalenko, Introduction to queueing theory, Math. Model., 5, Birkhäuser Boston, Inc., Boston, MA, 1989, xii+314 pp. | DOI | MR | Zbl