Queueing systems with vacations, interruptions, and delays in device operation
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 579-590 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Single-channel systems where service vacation is triggered when the system is free from customers are studied. Vacations in service can mean either a complete shutdown of the server or a transition to a different regime. If, during a vacation, the number of customers in the system reaches a certain fixed threshold, the vacation terminates and the unit resumes standard operations. A delay begins if the system is free from customers after a vacation; the delay interrupts at the moment of arrival of the first customer. Then a new vacation begins if no customers have arrived. The input of the queue outside vacations is a Poisson flow, and the remaining variables, which control the performance of the system (the service time, the durations of vacations and delays) have arbitrary distributions. A stationary distribution for the number of customers in the system is determined under the assumption that the process controlling the number of customers in the system during the vacation and the planned duration of the vacation are independent. We also study the asymptotic behavior for the number of completed vacations.
Keywords: queueing systems with vacations, delay policy, stationary distribution, renewal process.
@article{TVP_2022_67_3_a8,
     author = {G. A. Afanasiev},
     title = {Queueing systems with vacations, interruptions, and delays in device operation},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {579--590},
     year = {2022},
     volume = {67},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a8/}
}
TY  - JOUR
AU  - G. A. Afanasiev
TI  - Queueing systems with vacations, interruptions, and delays in device operation
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 579
EP  - 590
VL  - 67
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a8/
LA  - ru
ID  - TVP_2022_67_3_a8
ER  - 
%0 Journal Article
%A G. A. Afanasiev
%T Queueing systems with vacations, interruptions, and delays in device operation
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 579-590
%V 67
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a8/
%G ru
%F TVP_2022_67_3_a8
G. A. Afanasiev. Queueing systems with vacations, interruptions, and delays in device operation. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 3, pp. 579-590. http://geodesic.mathdoc.fr/item/TVP_2022_67_3_a8/

[1] Y. Levy, U. Yechiali, “Utilization of idle time in an $M/G/1$ queueing system”, Manag. Sci., 22:2 (1975), 202–211 | DOI | Zbl

[2] B. T. Doshi, “Queueing systems with vacations — a survey”, Queueing Syst., 1:1 (1986), 29–66 | DOI | MR | Zbl

[3] B. T. Doshi, “Single-server queues with vacations”, Stochastic analysis of computer and communication systems, North-Holland, Amsterdam, 1990, 217–265 | MR | Zbl

[4] H. Takagi, Queueing analysis: a foundation of performance analysis, v. 1, Vacation and priority systems, Part 1, North-Holland Publishing Co., Amsterdam, 1991, xii+487 pp. | MR | Zbl

[5] Naishuo Tian, Zhe George Zhang, Vacation queueing models. Theory and applications, Internat. Ser. Oper. Res. Management Sci., 93, Spinger, New York, 2006, xii+385 pp. | DOI | MR | Zbl

[6] L. D. Servi, S. G. Finn, “$\mathrm{M}/\mathrm{M}/1$ queue with working vacations $(\mathrm{M}/\mathrm{M}/1/\mathrm{WV})$”, Performance Evaluation, 50:1 (2002), 41–52 | DOI

[7] Jihong Li, Naishuo Tian, “The $\mathrm{M}/\mathrm{M}/1$ queue with working vacations and vacation interruptions”, J. Syst. Sci. Syst. Eng., 16 (2007), 121–127 | DOI

[8] Ji-Hong Li, Nai-Shuo Tian, Zhan-You Ma, “Performance analysis of $\mathrm{GI}/\mathrm{M}/1$ queue with working vacations and vacation interruption”, Appl. Math. Model., 32:12 (2008), 2715–2730 | DOI | MR | Zbl

[9] Mian Zhang, Zhengting Hou, “Performance analysis of $\mathrm{M}/\mathrm{G}/1$ queue with working vacations and vacation interruption”, J. Comput. Appl. Math., 234:10 (2010), 2977–2985 | DOI | MR | Zbl

[10] C. Sreenivasan, S. R. Chakravarthy, A. Krishnamoorthy, “$MAP/PH/1$ queue with working vacations, vacation interruptions and $N$ policy”, Appl. Math. Model., 37:6 (2013), 3879–3893 | DOI | MR | Zbl

[11] O. C. Ibe, O. A. Isijola, “$\mathrm{M}/\mathrm{M}/1$ multiple vacation queueing systems with differentiated vacations”, Model. Simul. Eng., 2014 (2014), 158247, 7 pp. | DOI

[12] O. C. Ibe, “$\mathrm{M}/\mathrm{G}/1$ vacation queueing system with server timeout”, Amer. J. Oper. Res., 5:2 (2015), 77–88 | DOI

[13] G. A. Afanasyev, “A vacation queue $\mathrm{M}|\mathrm{G}|1$ with close-down times”, Theory Probab. Appl., 66:1 (2021), 1–14 | DOI | DOI | MR | Zbl

[14] D. R. Koks, V. L. Smit, Teoriya vosstanovleniya, Sov. radio, M., 1967, 299 pp. ; D. R. Cox, Renewal theory, Methuen Co., Ltd., London; John Wiley Sons, Inc., New York, 1962, ix+142 с. ; W. L. Smith, “Renewal theory and its ramifications”, J. Roy. Statist. Soc. Ser. B, 20:2 (1958), 243–302 | MR | Zbl | MR | Zbl | MR | Zbl

[15] B. V. Gnedenko, I. N. Kovalenko, Introduction to queueing theory, Math. Model., 5, Birkhäuser Boston, Inc., Boston, MA, 1989, xii+314 pp. | DOI | MR | Zbl